facanal: Factor analysis via Expectation Maximization

Description Usage Arguments References

View source: R/PCAandFA.R

Description

This function fits an exploratory factor analysis model using expectation maximization using the method of Bai & Li (2012) to estimate the maximum likelihood solution.

Usage

1
2
3
4
5
6
7
8
facanal(
  Y,
  nfac = min(nrow(Y) - 3, ncol(Y) - 2),
  rotate = GPArotation::Varimax,
  scale = T,
  max.iter = 4000,
  tol = 1e-10
)

Arguments

Y

a numeric matrix or data frame of only numeric variables.

nfac

the number of factors to extract.

rotate

a rotation function from the GPArotation package. Defaults to Varimax.

scale

should the variables be scaled prior to analysis? Defaults to TRUE.

max.iter

maximum number of iterations. defaults to 4000.

tol

a tolerance value for convergence. defaults to 1e-10.

References

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension. The Annals of Statistics 40, 436-465.


abnormally-distributed/cvreg documentation built on May 3, 2020, 3:45 p.m.