Description Usage Arguments Details Examples
View source: R/bayesglm.R View source: R/bayesglm.R
glmBayes: Bayesian Generalized Linear Models
This implements the Zellner-Siow Cauchy g-prior for generalized linear models.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
formula |
model formula |
data |
a data frame |
family |
"gaussian", "poisson", "negbinom", "binomial", "gamma", "invgauss" |
link |
the link function. see details for available options. |
g |
a custom value for g prior. If left as NULL, the default is the ratio of sample size to predictors. |
max_iter |
max iterations for IRWLS algoritm |
sim |
if TRUE, draws the specified number of samples from the posterior distribution. defaults to FALSE. |
nsim |
the number of posterior samples. defaults to 4000. |
threshold |
tolerance for convergence |
x |
argument |
... |
other arguments |
This implements the Zellner-Siow Cauchy g-prior for generalized linear models
The following distributions and corresponding link functions are available:
Gaussian: "identity"
Binomial: "logit", "probit", "cauchit", "robit" (Student T with 3 df), and "cloglog"
Poisson & Negative Binomial: "log"
Gamma: "inverse" (1 / x)
Inverse Gaussian: "invsquare" (1/x^2)
1 | glmBayes()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.