grpTheilSen: Grouped Theil-Sen Robust Regression

Description Usage Arguments Value References

View source: R/suffDimReduct2.R

Description

This is analagous to the grpOLS function, except the robust Theil-Sen estimator replaces ordinary least squares.

Usage

1
grpTheilSen(X, Y, idx, ranks = NULL, tol = 1e-05, maxiter = 100)

Arguments

X

a model matrix (must be numeric, not categorical)

Y

the outcome variable (must be numeric, not categorical)

idx

group id labels

ranks

an indicator for each group whether the covariates of said group are active.

Value

an sdr object

References

Liu, Y., Chiaromonte, F. and Li, B. (2017) Structured Ordinary Least Squares: A Sufficient Dimension Reduction approach for regressions with partitioned predictors and heterogeneous units. Biom, 73: 529-539. doi:10.1111/biom.12579


abnormally-distributed/cvreg documentation built on May 3, 2020, 3:45 p.m.