corr.mreg: Multiple Regression Analysis

View source: R/ch14-fn.R

corr.mregR Documentation

Multiple Regression Analysis

Description

Multiple Regression Analysis

Usage

corr.mreg(xd, y, form, xd2, form2, step = 0:4, newd, pvx, xrng, nx,
  alp = 0.05, dig = 4)

Arguments

xd

Data frame of independent variables (explanatory variables)

y

Vector of dependent variable (response variable) data

form

Formula of regression model (ex: y ~ x1 + x2)

xd2

Data frame of independent variables in model2 (step=4, 5)

form2

Formula of regression model2 (ex: y ~ x1 * x2) (step=4, 5)

step

Steps of multiple regression analysis, Default: 0:4

newd

Data frame of independent variables for step 6

pvx

Designated number of independent variables for step 6(step=7)

xrng

Range of independent variables for step 7

nx

Designated number of independent variables for step 7

alp

Level of significance, Default: 0.05

dig

Number of digits below the decimal point, Default: 4

Value

None.

Examples

mpg = mtcars$mpg
xd = mtcars[4:6]
attach(xd)
form = mpg ~ hp + drat + wt
corr.mreg(xd, mpg, form, step=0:3)

form2 = mpg ~ hp * drat + wt
xd2 = data.frame(hp, drat, wt, hpd= hp * drat)
corr.mreg(xd, mpg, form, xd2, form2, step=4:5)

adoocavo/Rstat_M1 documentation built on March 19, 2022, 3:34 a.m.