knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Once you have your hypsograph, water temperature observations and meteorological files prepared, running LakeEnsemblR is relatively straightforward.
# Load LakeEnsemblR library(LakeEnsemblR) # Copy template folder template_folder <- system.file("extdata/feeagh", package= "LakeEnsemblR") dir.create("example") # Create example folder file.copy(from = template_folder, to = "example", recursive = TRUE) setwd("example/feeagh") # Change working directory to example folder
knitr::opts_knit$set(root.dir = "example/feeagh")
# Set config file & models config_file <- "LakeEnsemblR.yaml" model <- c("FLake", "GLM", "GOTM", "Simstrat", "MyLake") # Example run # 1. Export settings - creates directories with all model setups and exports settings from the LER configuration file export_config(config_file = config_file, model = model) # 2. Run ensemble lake models run_ensemble(config_file = config_file, model = model)
# Load libraries for post-processing library(gotmtools) library(ggplot2) ## Plot model output using gotmtools/ggplot2 # Extract names of all the variables in netCDF ncdf <- "output/ensemble_output.nc" vars <- gotmtools::list_vars(ncdf) vars # Print variables p1 <- plot_heatmap(ncdf) p1 # Change the theme and increase text size for saving p1 <- p1 + theme_classic(base_size = 14) + scale_colour_gradientn(limits = c(0, 21), colours = rev(RColorBrewer::brewer.pal(11, "Spectral"))) p1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.