estimate_z_expansion: Estimate vertical expansion factor for 3D kriging

View source: R/estimate_z_expansion.R

estimate_z_expansionR Documentation

Estimate vertical expansion factor for 3D kriging

Description

Uses L-BFGS algorithm implemented in optim().

Usage

estimate_z_expansion(
  x,
  location_formula,
  kriging_formula,
  model,
  z_start,
  cv_index,
  anisotropy_parameters = c(0, 0, 0, 1, 1),
  vgm_width,
  nm = Inf,
  maxdist = Inf,
  use_for_mse = rep(TRUE, length(cv_index)),
  z_limits = c(10, 5e+05)
)

Arguments

x

data.frame containing

location_formula

Formula to use for location argument to gstat. See gstat documentation for description of the formula interface (see ?gstat::gstat).

kriging_formula

Formula to use for kriging. See gstat documentation for description of the formula interface (see ?gstat::gstat).

z_start

Starting value for vertical expansion estimation

cv_index

Index of folds for cross validation

vgm_width

Optional.

nm

Maximum number of nearest neighbor observations to use for interpolation.

use_for_mse

Logical vector indicating whether to use an observation to calculate MSE for cross-validation.

z_limits

Upper and lower bounds for z_expansion, for optimization.

anisotopy_parameters

Anisotropy parameters to use for ordinary kriging as a 5L vector. See: ?gstat::vgm. If NULL and estimate_anisotropy, anisotropy is estimated.

variogram_model

Character vector indicating which variogram model to use for interpolation. Valid options are exponential (exp), circular (cir), gaussian (gau), Bessel (bes), Matern (mat), or Stein's Matern (ste).


afsc-gap-products/coldpool documentation built on Dec. 20, 2024, 11:47 a.m.