View source: R/estimate_z_expansion.R
estimate_z_expansion | R Documentation |
Uses L-BFGS algorithm implemented in optim().
estimate_z_expansion(
x,
location_formula,
kriging_formula,
model,
z_start,
cv_index,
anisotropy_parameters = c(0, 0, 0, 1, 1),
vgm_width,
nm = Inf,
maxdist = Inf,
use_for_mse = rep(TRUE, length(cv_index)),
z_limits = c(10, 5e+05)
)
x |
data.frame containing |
location_formula |
Formula to use for location argument to gstat. See gstat documentation for description of the formula interface (see ?gstat::gstat). |
kriging_formula |
Formula to use for kriging. See gstat documentation for description of the formula interface (see ?gstat::gstat). |
z_start |
Starting value for vertical expansion estimation |
cv_index |
Index of folds for cross validation |
vgm_width |
Optional. |
nm |
Maximum number of nearest neighbor observations to use for interpolation. |
use_for_mse |
Logical vector indicating whether to use an observation to calculate MSE for cross-validation. |
z_limits |
Upper and lower bounds for z_expansion, for optimization. |
anisotopy_parameters |
Anisotropy parameters to use for ordinary kriging as a 5L vector. See: ?gstat::vgm. If NULL and estimate_anisotropy, anisotropy is estimated. |
variogram_model |
Character vector indicating which variogram model to use for interpolation. Valid options are exponential (exp), circular (cir), gaussian (gau), Bessel (bes), Matern (mat), or Stein's Matern (ste). |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.