EN_model | R Documentation |
Samples pseudo-absences from a environmental extent based on euclidean distances to the observations in a environmental PCA
EN_model(
env,
occ,
res = NULL,
path = "./",
project.name = "NINA_EN",
nstart = 25,
k.max = NULL,
B = 100,
crs = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0",
extrapolate.niche = FALSE,
save.bootstraps = F,
save.model = F,
cor = F,
relative.niche = T,
h = "href",
mask = NULL,
th.o = NULL,
th.s = NULL,
density.method = c("epa", "bivnorm"),
combine.clusters = FALSE,
cluster = NULL,
n.clus = NULL,
R = 100,
sample.pseudoabsences = TRUE,
eval = FALSE,
split.data = FALSE,
split.percentage = 0.25,
split.method = c("kmeans", "Euclidean"),
plot.eval = FALSE,
rep = 100,
th = NULL,
ras = NULL,
best.th = c("accuracy", "similarity"),
bootstraps = 1,
assemble.models = TRUE,
assemble.method = c("ACC", "Jaccard Similarity", "TSS", "AUC", "kappa")
)
env |
Environmental data frame |
occ |
Occurrence dataset |
res |
grid resolution of the spatial extent |
path |
Directory path of partition models |
project.name |
String indicating the project name. Default is "NINA_EN" |
nstart |
Burn up start for clustering estimation |
k.max |
Maximum number of cluseters |
B |
Number of runs |
crs |
CRS object or a character string describing a projection and datum in PROJ.4 format |
extrapolate.niche |
Boolean wheter to allow niche extrapolation if needed |
save.bootstraps |
Boolean whether to save partitions |
save.model |
Boolean whether to save the model |
cor |
Logical |
relative.niche |
logical. Only in case of using clustering method. If TRUE, computes the relative species niche density over the overall species niche clusters. |
h |
smoothing parameter for the kernel estimation. Default is 'href'. Altenrtanively can be set to 'LSCV' or any given numeric value |
mask |
raster mask to resample the created kernel densiity grid raster |
th.o |
numeric threshold to filter density values of occurrences |
th.s |
numeric threshold to filter density values of environment |
density.method |
"epanechnikov" or "bivnorm" |
combine.clusters |
Boolean whether to combine regions into global models |
cluster |
data frame with clustered regions as levels |
n.clus |
number of clusters to perform |
R |
niche space grid |
sample.pseudoabsences |
Boolean to whether sample pseudo-absences |
eval |
Boolean whether to evaluate the model |
split.data |
Boolean whether to split data in case of model bootstrapping |
split.percentage |
Split percentage, Default is 0.25 |
split.method |
String indicating the method to split occurrence data. Default is kmeans |
plot.eval |
Logical to whether plot the evaluation |
rep |
number of randomzation tests |
th |
threshold to perform cut off for model evaluation |
ras |
raster to constrain pseudoabsences sampling in model evalluation |
best.th |
method to select the best thresholt. Default is "similarity" |
bootstraps |
Integer indicating number of partitions to perform. Default is 1 |
assemble.models |
Boolean whether to assemble all partitions into ensemble model |
assemble.method |
String indicating the evaluation parameter to weight and compute the assembling. Default is "ACC" |
Returns an error if filename
does not exist.
List of elements
## Not run:
EN<- EN_model(env_data, occ_data1, boot)
## End(Not run)
## Not run:
EN<- EN_model(env_data, occ_data2, cluster = "env", n.clus = 5)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.