Man pages for agnesdeng/misle
Multiple imputation through statistical learning

adultAdult dataset
batch_itermake batch datasets, each with size batch_size
createNACreate missing value for a dataset
data_cleanThis function is used to check some common errors of a raw...
denoise_decoderMidae Decoder update function
denoise_encoderMidae Encoder update function
feature_typeReturn the type of each variable in the dataset
he_initKaiming He Initialization
impute.newThis function is used to impute new data using training...
install_misleInstall the TensorFlow backend (modified code from Keras)
inv.minmax_dataThis function back-transform data to an output as data matrix
MidaeR6 class for Midae imputer
Midae.bootR6 class for Midae bootstrapping imputer
Midae.boot2R6 class for Midae bootstrapping imputer2
midae_initMidae initialisation
midae_optimizermidae cost function
midae_outputMidae output evaluation
minmaxscale a vector using minmax
minmax_datamimax data function
minmax_scalerscale a dataset and return a scaled dataframe, the colmin and...
mislemivae: multiple imputation using variational autoencoders
MivaeMivae imputer object R6 class for Mivae imputer
mivae_initMivae initialisation
mivae_outputMivae output evaluation
MixgbMultiple imputation through xgboost R6 class imputer object
Mixgb.trainMultiple imputation through xgboost R6 class imputer object...
onehotThis function is used to convert dataframe into onehot...
output_structureThis function is use to identify the structure of input
sort_featureThis function is used to sequence the columns of the dataset,...
sortNASort the dataset by increasing number of missing values
variable_classThis function is used to detect the...
xavier_initXavier Initialization using Uniform distribution
agnesdeng/misle documentation built on Sept. 22, 2023, 8:48 p.m.