Mixgb.train | R Documentation |
Set up an xgboost imputer object with specified hyperparameters and then obtain an imputed object including multiple imputed datasets, saved models and parameters.
new()
Create a new Mixgb
object. This is used to set up the multiple imputation imputer using xgboost.
Mixgb.train$new( data, nrounds = 50, max_depth = 6, gamma = 0.1, eta = 0.3, nthread = 4, early_stopping_rounds = 10, colsample_bytree = 1, min_child_weight = 1, subsample = 1, pmm.k = 5, pmm.type = "auto", pmm.link = "logit", scale_pos_weight = 1, initial.imp = "random", tree_method = "auto", gpu_id = 0, predictor = "auto", print_every_n = 10L, verbose = 0 )
data
A data frame with missing values
nrounds
max number of boosting iterations. Default: 50
max_depth
maximum depth of the tree. Default: 6
gamma
Default: 0.1
eta
Default: 0.3
nthread
Default: 4
early_stopping_rounds
Default: 10,
colsample_bytree
Default: 1
min_child_weight
Default: 1
subsample
Default: 1
pmm.k
Default: 5
pmm.type
Default: "auto" (used to be NULL)
pmm.link
Default: "logit"
scale_pos_weight
Default:1
initial.imp
Default: "random"
tree_method
Default: "auto" (can set "gpu_hist" for linux)
gpu_id
Device ordinal. Default: 0
predictor
The type of predictor algorithm to use. Default: "auto" (other options: "cpu_predictor","gpu_predictor")
print_every_n
Default: 10L
verbose
Default: 0
MIXGB=Mixgb.train$new(withNA.df) MIXGB=Mixgb.train$new(withNA.df,nrounds=50,max_depth=6)
impute()
Use the imputer to impute missing values and obtain multiple imputed datasets, saved training models and some parameters needed for future use.
Mixgb.train$impute(m = 5, save.vars = NULL)
m
the number of imputed datasets. Default: 5
save.vars
the names or indices of variables that users want to save models for. Default: NULL. By default, save.vars=NULL, imputation models for all variables will be saved for imputing future data. However, if users know that future data will only have missing values in certain variables, they can choose to save models only for those variables.
MIXGB=Mixgb.train$new(withNA.df) mixgb.obj=MIXGB$impute(m = 5)
## ------------------------------------------------
## Method `Mixgb.train$new`
## ------------------------------------------------
MIXGB=Mixgb.train$new(withNA.df)
MIXGB=Mixgb.train$new(withNA.df,nrounds=50,max_depth=6)
## ------------------------------------------------
## Method `Mixgb.train$impute`
## ------------------------------------------------
MIXGB=Mixgb.train$new(withNA.df)
mixgb.obj=MIXGB$impute(m = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.