knitr::opts_chunk$set(echo = TRUE)
MS 7.118 - pg 364
library(LaF) # Function that samples the file sample1 <- function(file, n) { lf <- laf_open(detect_dm_csv(file, sep = ",", header = TRUE, factor_fraction = -1)) return(read_lines(lf, sample(1:nrow(lf), n))) } # Our sample sample <- sample1("NZBIRDS.csv", 35)
mp <- c(-1,1) mean(sample$Body.Mass) + mp*qt(1-.05,34)*sd(sample$Body.Mass)/sqrt(35)
The mean of the sampled birds' body masses will fall in the itnerval with 95% confidence
The interval is 95% confidence, which is why it is very likely to contain mu
mean(sample$Egg.Length) + mp*qt(1-.05,34)*sd(sample$Egg.Length)/sqrt(35)
The mean of the sampled birds' Egg Length will fall in the itnerval with 95% confidence
The interval is 95% confidence, which is why it is very likely to contain mu
n1 = 38 # total extinct n2 = 78 # total not extinct p1hat = 21 / n1 q1hat = 1 - p1hat p2hat = 7 / n2 q2hat = 1 - p2hat mp = c(-1,1) ci <- (p1hat - p2hat) + mp * qnorm(1-.05/2,0,1)*sqrt((p1hat*q1hat/n1) + (p2hat*q2hat/n2)) ci
Yes, theory is supported.
MS 7.120 - pg 36
s1 <- rnorm(100, mean = 1312, sd = 422) s2<- rnorm(47, mean = 1352, sd = 271) t.test(s1,s2, conf.level = .95)
MS 7.128 - pg 367
MS 8.24 - pg 390
The null hypothesis is that $\mu = 2$ and the alternative hypothesis is that $\mu \neq2$
T: -1.02 and the P-value:0.322
The reject region is |T| < 2.1262
Since the pvalue is greater than alpha, we accept the null hypotehsis
Both testing methods can can test null hypothesis $\mu=0$ agains the alternative hypothesis $\mu \neq 0$
MS 8.28 - pg 392
MS 8.44 - pg 401
data <- read.csv("ORCHARD.csv") foggy <- data[data$CONDITION == "FOG",] cloudyClear <- data[data$CONDITION != "FOG",] t.test(data$CONDITION == "FOG",data$CONDITION != "FOG", mu= 0, conf.level = .95)
We see the pvalue is > than alpha, thus we accept $H_0:\mu_1-\mu_2 = 0$
MS 8.84 - pg 425
turbine <- read.csv("GASTURBINE.csv") traditional <- turbine[turbine$ENGINE == "Traditional",] aeroder <- turbine[turbine$ENGINE == "Aeroderiv",] var.test(traditional$HEATRATE, aeroder$HEATRATE,conf.level = .95, var.equal=T)
We can see the pvalue is such that we do not have sufficient evidence to reject the null hypothesis.
advanced <- turbine[turbine$ENGINE == "Advanced",] var.test(advanced$HEATRATE, aeroder$HEATRATE,conf.level = .95, var.equal=T)
MS 7.118 - pg 364
MS 8.104 - pg 439
The NULL and alternative hypotheses are: $H_0: \mu_d = 0$ and $H_1: \mu_d \neq 0$
We will assume equal variances.
data<- read.csv("THRUPUT.csv") t.test(data$HUMAN, data$AUTO, mu=0, paired = T)
We see that the pvalue is < than alpha (.05), therefore we must reject the null hypothesis.
## sample function set.seed(35) # This will give everyone the same sample sam=round(rnorm(30,mean=20,sd=3),3) ########### bootstrap function ################## myboot<-function(iter=10000,x,fun="mean",alpha=0.05,...){ #Notice where the ... is repeated in the code n=length(x) #sample size y=sample(x,n*iter,replace=TRUE) rs.mat=matrix(y,nr=n,nc=iter,byrow=TRUE) xstat=apply(rs.mat,2,fun) # xstat is a vector and will have iter values in it ci=quantile(xstat,c(alpha/2,1-alpha/2))# Nice way to form a confidence interval # A histogram follows # The object para will contain the parameters used to make the histogram para=hist(xstat,freq=FALSE,las=1, main=paste("Histogram of Bootstrap sample statistics","\n","alpha=",alpha," iter=",iter,sep=""), ...,col = rainbow(5)) #mat will be a matrix that contains the data, this is done so that I can use apply() mat=matrix(x,nr=length(x),nc=1,byrow=TRUE) #pte is the point estimate #This uses whatever fun is pte=apply(mat,2,fun) abline(v=pte,lwd=3,col="Black")# Vertical line segments(ci[1],0,ci[2],0,lwd=4) #Make the segment for the ci text(ci[1],0,paste("(",round(ci[1],2),sep=""),col="Red",cex=3) text(ci[2],0,paste(round(ci[2],2),")",sep=""),col="Red",cex=3) # plot the point estimate 1/2 way up the density text(pte,max(para$density)/2,round(pte,2),cex=3) return(list(ci=ci,fun=fun,x=x, t=t))# Some output to use if necessary } myboot(x=sam)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.