knitr::opts_chunk$set(echo = TRUE)
getwd()
d=c(5.0581, 4.9707, 5.0893, 4.9334, 4.9777, 5.0285, 4.8555, 4.9565, 4.9769, 4.9722, 4.999, 4.9925, 4.9686, 5.0662, 4.9239, 4.9781, 5.0485, 5.0014, 4.9957, 5.0195, 5.0118, 4.9928, 5.0361, 5.0185, 4.9879) mp = c(-1,1) # for 95% ci ci95= mean(d) + mp*qt(0.975,24)*sd(d)/sqrt(25) # for 90% ci ci90= mean(d) + mp*qt(0.95,24)*sd(d)/sqrt(25) # for 80% ci ci80= mean(d) + mp*qt(0.9,24)*sd(d)/sqrt(25) # for 50% ci ci50= mean(d) + mp*qt(0.75,24)*sd(d)/sqrt(25)
ci95
ci90
ci80
ci50
object <- t.test(d, conf.level = .80) object$conf.int
#95 xsq1_95=qchisq(0.975,29) #1-a/2 xsq2_95=qchisq(0.025,29) #a/2 #90 xsq1_90=qchisq(0.95,29) #1-a/2 xsq2_90=qchisq(0.05,29) #a/2 #80 xsq1_80=qchisq(0.9,29) #1-a/2 xsq2_80=qchisq(0.1,29) #a/2 #50 xsq1_50=qchisq(0.75,29) #1-a/2 xsq2_50=qchisq(0.25,29) #a/2
ci=c() ci[1]=29*var(d)/xsq1_95 ci[2]=29*var(d)/xsq2_95 ci
ci=c() ci[1]=29*var(d)/xsq1_90 ci[2]=29*var(d)/xsq2_90 ci
ci=c() ci[1]=29*var(d)/xsq1_80 ci[2]=29*var(d)/xsq2_80 ci
ci=c() ci[1]=29*var(d)/xsq1_50 ci[2]=29*var(d)/xsq2_50 ci
# n = 20 blue=c(21.65, 17.48, 20.1, 21.57, 14.82, 19.17, 21.08, 18.23, 22.93, 15.66, 20.89, 21.66, 18.5, 20.59, 18.63, 18.91, 19.53, 17.7, 16.5, 19.03) # n = 15 snapper=c(31.65, 27.48, 30.1, 31.57, 24.82, 29.17, 31.08, 28.23, 32.93, 25.66, 30.89, 31.66, 28.5, 30.59, 28.63)
n1=length(snapper) n2=length(blue) spsq=((n1-1)*var(snapper)+(n2-1)*var(blue))/(n1+n2-2) t=qt(0.975,n1+n2-2) ci=c() ci[1]=mean(snapper)-mean(blue)-t*sqrt(spsq*(1/n1+1/n2)) ci[2]=mean(snapper)-mean(blue)+t*sqrt(spsq*(1/n1+1/n2)) ci
The mean difference will fall into the above interval with 95% confidence
t.test(snapper,blue,conf.level=0.95,var.equal=TRUE)$conf.int
t.test(snapper,blue,conf.level=0.90,var.equal=TRUE)$conf.int
t.test(snapper,blue,conf.level=0.80,var.equal=TRUE)$conf.int
t.test(snapper,blue,conf.level=0.50,var.equal=TRUE)$conf.int
As the confidence level decreases, so does the interval
#Paired exams Exam1=c(40.98, 59.36, 46.69, 41.8, 61.63, 65.31, 62.96, 60.21, 56.89, 78.41, 53.44, 75.2, 60.54, 52.43, 41.41, 70.79, 73.55, 55.65, 61.43, 63.84, 58.07, 53.79, 54.45, 67.18, 44.46) Exam2=c(50.22, 66.19, 58.75, 51.88, 66.61, 70.86, 74.25, 70.23, 69.55, 87.18, 63.62, 81.7, 70.5, 66.02, 51.35, 80.92, 85.65, 65.44, 74.37, 75.28, 67.86, 59.92, 64.42, 73.57, 57.15)
alpha = .05 n = length(Exam1) dbar = mean(Exam1 - Exam2) t = qt(1- alpha / 2, n -1) sd = sd(Exam1-Exam2) mp = c(-1,1) diff = dbar + mp * t *sd / sqrt(n) diff
The difference in means from Exam1 - Exam2 falls into the interval with 95% confidence
t.test(Exam1, Exam2, paired = T, conf.level = .90)$conf.int
t.test(Exam1, Exam2, paired = T, conf.level = .80)$conf.int
t.test(Exam1, Exam2, paired = T, conf.level = .70)$conf.int
t.test(Exam1, Exam2, paired = T, conf.level = .60)$conf.int
t.test(Exam1, Exam2, paired = T, conf.level = .10)$conf.int
birds <- read.csv("NZBIRDS.csv") addmargins(with(birds, table(Extinct, Flight)))
The data agrees with the given table
n1 = 38 # total not extinct n2 = 78 #total extinct p1hat = 21 / n1 #nonflying and NOT extinct / total not extinct q1hat = 1 - p1hat p2hat = 7 / n2 q2hat = 1 - p2hat mp = c(-1,1) ci <- (p1hat - p2hat) + mp * qnorm(1-.05/2,0,1)*sqrt((p1hat*q1hat/n1) + (p2hat*q2hat/n2)) ci
set.seed(35); sam1=rnorm(25,mean=10, sd=5) set.seed(45); sam2=rnorm(34, mean=40, sd=8)
a = .05 s1 = sd(sam1) nu1 = length(sam1) - 1 s2 = sd(sam2) nu2 = length(sam2) - 1 fl = qf(1 - a/2,nu1,nu2) fr = qf(1-a/2,nu2, nu1) c(s1^2/s2^2/fl, s1^2/s2^2*fr)
var.test(sam1,sam2, conf.level = .80)$conf.int
var.test(sam1,sam2, conf.level = .70)$conf.int
var.test(sam1,sam2, conf.level = .60)$conf
var.test(sam1,sam2, conf.level = .50)$conf.int
set.seed(23) x = rnorm(30, mean=10, sd=12) grac0009MATH4753::myci(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.