knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
<<<<<<< HEAD library(devtools) library(usethis) library(covid19interventions) # run if you don't have covid19clark devtools::install_github("agroimpacts/covid19clark") library(devtools) library(usethis) >>>>>>> master library(covid19interventions) # run if you don't have covid19clark <<<<<<< HEAD # devtools::install_github("agroimpacts/covid19clark", build_vignettes = TRUE) ======= devtools::install_github("agroimpacts/covid19clark") >>>>>>> master library(covid19clark)
# data load # covid interventions by county data("county_interventions") # covid cases data("us_cases_daily")
# interventions head(county_interventions) # covid cases by county head(us_cases_daily$county)
#------------------------------------------------------------------------------------------------------------ # How many cases and deaths were recorded the date the intervention measures were put in place? library(dplyr) library(tidyr) library(tidyverse) library(stringr) df1 <- as.data.frame(county_interventions) df1$admin2 <- sapply(df1$admin2, tolower) df1$admin1 <- sapply(df1$admin1, tolower) df1$acronym <- sapply(df1$acronym, tolower) df1$admin2_rep = str_replace(df1$admin2, " county", "") df2 <- as.data.frame(us_cases_daily$county) df3 <- as.data.frame(us_cases_daily$state) #------------------------------------------------------------------------------------------------------------ #Values for day of cima2 <- inner_join(df1,df2, by = c("SAH_County_Date" = "date", "admin1" = "state1", "admin2_rep" = "county.x")) %>% group_by(admin2_rep) %>% mutate(case_pop = cases / pop) #------------------------------------------------------------------------------------------------------------ #new dataframe of cases one week before before1 <- df1 before1$SAH_County_Date = before1$SAH_County_Date - 7 before1_df <- inner_join(before1,df2, by = c("SAH_County_Date" = "date", "admin1" = "state1", "admin2_rep" = "county.x")) %>% group_by(admin2_rep) %>% mutate(case_pop = cases / pop) #------------------------------------------------------------------------------------------------------------ #New dataframe of cases one week after after <- df1 after$SAH_County_Date = after$SAH_County_Date + 7 after_df <- inner_join(after,df2, by = c("SAH_County_Date" = "date", "admin1" = "state1", "admin2_rep" = "county.x")) %>% group_by(admin2_rep) %>% mutate(case_pop = cases / pop) #------------------------------------------------------------------------------------------------------------ #State Before state_before <- df1 state_before$SAH_State_Date= state_before$SAH_State_Date - 14 state_before_df <- inner_join(state_before,df3, by = c("SAH_State_Date" = "date", "admin1" = "state1")) %>% group_by(admin2_rep) %>% mutate(case_pop = cases / pop) #------------------------------------------------------------------------------------------------------------ #State During state_during <- df1 #state_before$SAH_State_Date= state_before$SAH_State_Date state_during_df <- inner_join(state_during,df3, by = c("SAH_State_Date" = "date", "admin1" = "state1")) %>% group_by(admin2_rep) %>% mutate(case_pop = cases / pop) #------------------------------------------------------------------------------------------------------------ #State After state_after <- df1 state_after$SAH_State_Date = state_before$SAH_State_Date + 14 state_after_df <- inner_join(state_after,df3, by = c("SAH_State_Date" = "date", "admin1" = "state1")) %>% group_by(admin2_rep) %>% mutate(case_pop = cases / pop) #------------------------------------------------------------------------------------------------------------ #Plot library(ggplot2) library(tidyverse) g <- ggplot(data = cima2, aes(x=cima2$admin2_rep, y=case_pop)) + geom_bar( stat="identity", fill = 'steelblue') g coord_cartesian( xlim = NULL, ylim = NULL, expand = TRUE, default = FALSE, clip = "on" ) g1 <- ggplot(data = state_before_df, aes(x=admin1, y=case_pop)) + geom_bar( stat="identity", fill = 'steelblue') g1 library(pacman) pacman::p_unload(pacman::p_loaded(), character.only = TRUE) # Load libraries library(dplyr) # data wrangling library(cartogram) # for the cartogram library(ggplot2) # to realize the plots library(modelr) #library(broom) # from geospatial format to data frame library(tweenr) # to create transition dataframe between 2 states library(gganimate) # To realize the animation library(maptools) # world boundaries coordinates library(viridis) #what if you convert yours into a bubble plot and the magnitude of the blubles could be number of casses (edited) #and then the color of the bubbles could show party. (edited) # Get US map #usa <- map_data("state") gg <- ggplot() #gg <- gg + geom_path(data = usa, aes(x = long, y = lat, group = group) , fill="#ffffff", color="#0e0e0e", size=0.15) # your bubbles #gg <- gg + geom_point(data=cima2, aes(x= cases, y = cases) color="#AD655F") #gg <- gg + labs(title="Bubbles") # much better projection for US maps #gg <- gg + coord_map(projection="albers", lat=39, lat1=45) #gg <- gg + theme_map() #gg <- gg + theme(legend.position="bottom") #gg <- gg + theme(plot.title=element_text(size=16)) #gg #----------------------------------------------------------------------------------------------------------------------------- devtools::install_github("wmurphyrd/fiftystater") library(ggplot2) library(fiftystater) data("fifty_states") # this line is optional due to lazy data loading head(fifty_states) fifty_states <- as.data.frame(fifty_states) stateb4 <- right_join(state_before_df, fifty_states, by = c("admin1" = "id")) statedur <- right_join(state_during_df, fifty_states, by = c("admin1" = "id")) stateaft <- right_join(state_after_df, fifty_states, by = c("admin1" = "id")) # map_id creates the aesthetic mapping to the state name column in your data p <- ggplot(stateb4, aes(map_id = admin1)) + # map points to the fifty_states shape data geom_map(aes(fill = case_pop), map = fifty_states) + expand_limits(x = fifty_states$long, y = fifty_states$lat) + coord_map() + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) + labs(x = "", y = "") + theme(legend.position = "bottom", panel.background = element_blank())+ theme(legend.key.width = unit(5, "cm")) p
#How many cases and deaths were recorded the date the intervention measures were put in place? #1.Loop through all counties in the list to find the dates and number of cases&deaths for before, during, and after interventions were put in place. #2.Then do a plot where the date is on the x axis and the number of cases and deaths are on the y axis. #3.After plotting those two lines find the places that showed the highest and lowest drops due to the intervention or lack thereof.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.