| BetaNoncentral | R Documentation |
Mathematical and statistical functions for the Noncentral Beta distribution, which is commonly used as the prior in Bayesian modelling.
The Noncentral Beta distribution parameterised with two shape parameters, \alpha, \beta, and location, \lambda, is defined by the pdf,
f(x) = exp(-\lambda/2) \sum_{r=0}^\infty ((\lambda/2)^r/r!) (x^{\alpha+r-1}(1-x)^{\beta-1})/B(\alpha+r, \beta)
for \alpha, \beta > 0, \lambda \ge 0, where B is the Beta function.
Returns an R6 object inheriting from class SDistribution.
The distribution is supported on [0, 1].
BetaNC(shape1 = 1, shape2 = 1, location = 0)
N/A
N/A
distr6::Distribution -> distr6::SDistribution -> BetaNoncentral
nameFull name of distribution.
short_nameShort name of distribution for printing.
descriptionBrief description of the distribution.
aliasAlias of the distribution.
packagesPackages required to be installed in order to construct the distribution.
propertiesReturns distribution properties, including skewness type and symmetry.
distr6::Distribution$cdf()distr6::Distribution$confidence()distr6::Distribution$correlation()distr6::Distribution$getParameterValue()distr6::Distribution$iqr()distr6::Distribution$liesInSupport()distr6::Distribution$liesInType()distr6::Distribution$median()distr6::Distribution$parameters()distr6::Distribution$pdf()distr6::Distribution$prec()distr6::Distribution$print()distr6::Distribution$quantile()distr6::Distribution$rand()distr6::Distribution$setParameterValue()distr6::Distribution$stdev()distr6::Distribution$strprint()distr6::Distribution$summary()distr6::Distribution$workingSupport()new()Creates a new instance of this R6 class.
BetaNoncentral$new( shape1 = NULL, shape2 = NULL, location = NULL, decorators = NULL )
shape1(numeric(1))
First shape parameter, shape1 > 0.
shape2(numeric(1))
Second shape parameter, shape2 > 0.
location(numeric(1))
Location parameter, defined on the non-negative Reals.
decorators(character())
Decorators to add to the distribution during construction.
clone()The objects of this class are cloneable with this method.
BetaNoncentral$clone(deep = FALSE)
deepWhether to make a deep clone.
Jordan Deenichin
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine,
Beta,
Cauchy,
ChiSquaredNoncentral,
ChiSquared,
Dirichlet,
Erlang,
Exponential,
FDistributionNoncentral,
FDistribution,
Frechet,
Gamma,
Gompertz,
Gumbel,
InverseGamma,
Laplace,
Logistic,
Loglogistic,
Lognormal,
MultivariateNormal,
Normal,
Pareto,
Poisson,
Rayleigh,
ShiftedLoglogistic,
StudentTNoncentral,
StudentT,
Triangular,
Uniform,
Wald,
Weibull
Other univariate distributions:
Arcsine,
Arrdist,
Bernoulli,
Beta,
Binomial,
Categorical,
Cauchy,
ChiSquaredNoncentral,
ChiSquared,
Degenerate,
DiscreteUniform,
Empirical,
Erlang,
Exponential,
FDistributionNoncentral,
FDistribution,
Frechet,
Gamma,
Geometric,
Gompertz,
Gumbel,
Hypergeometric,
InverseGamma,
Laplace,
Logarithmic,
Logistic,
Loglogistic,
Lognormal,
Matdist,
NegativeBinomial,
Normal,
Pareto,
Poisson,
Rayleigh,
ShiftedLoglogistic,
StudentTNoncentral,
StudentT,
Triangular,
Uniform,
Wald,
Weibull,
WeightedDiscrete
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.