est.VAS.DML: ML estimation for the Vasicek model (Euler method)

View source: R/DML_OU.R

est.VAS.DMLR Documentation

ML estimation for the Vasicek model (Euler method)

Description

Parametric estimation for the Vasicek model using maximum likelihood and the discretized version of the model, obtained with the Euler-Maruyama method. The parametric form of the Vasicek model used here is given by

dX_t = (α - κ X_t)dt + σ dW_t.

Usage

est.VAS.DML(X, Delta = deltat(X), par = NULL)

Arguments

X

a numeric vector, the sample path of the SDE.

Delta

a single numeric, the time step between two consecutive observations.

par

a numeric vector with dimension three indicating initial values of the parameters. Defaults to NULL, fits a linear model as an initial guess.

Value

A list containing a matrix with the estimated coefficients and the associated standard errors.

Examples

x <- rVAS(360, 1/12, 0, 0.08, 0.9, 0.1)
est.VAS.DML(x)

alejandralopezperez/estsde documentation built on Sept. 4, 2022, 4:48 a.m.