View source: R/ACutils_export.R
dnct | R Documentation |
This function evaluates the density of a Non Central Student t in a given point. Such a distribution is defined as follow: \mjsdeqnX~\sim~nct(n_0,\mu_0,\gamma_0) if \mjtdeqn$$\begineqnarray*f(X|n_0,\mu_0,\gamma_0) = \frac\Gamma(\fracn_0+12)\Gamma(\fracn_02)\frac1\sqrt\pi\gamma_0n_0\left(1+\frac1n_0(\fracx-\mu_0\gamma_0)^2\right)^-\fracn_0+12 eqnarray*$$\begineqnarray*f(X|n_0,\mu_0,\gamma_0) = \frac\Gamma(\fracn_0+12)\Gamma(\fracn_02)\frac1\sqrt\pi\gamma_0n_0\left(1+\frac1n_0(\fracx-\mu_0\gamma_0)^2\right)^-\fracn_0+12 \endeqnarray*\begineqnarray* f(X|n_0,\mu_0,\gamma_0) = \frac\Gamma(\fracn_0+12)\Gamma(\fracn_02)\frac1\sqrt\pi\gamma_0n_0\left(1+\frac1n_0(\fracx-\mu_0\gamma_0)^2\right)^-\fracn_0+12 \endeqnarray* where \mjseqnn_0 are the degree of freedom, \mjseqn\mu_0 is the location parameter and \mjseqn\gamma_0 is the scale parameter. The usual t density can be recovered by placing \mjseqn\mu_0=0 and \mjseqn\gamma_0 = 1.
dnct(x, n0, mu0, gamma0)
x |
the point where to evaluate the density. |
n0 |
the degree of fredoom. |
mu0 |
the location parameter. |
gamma0 |
the scale parameter. |
scalar representing the evaluation of the density at x
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.