README.md

Medbetareg

Elicitation of conditional distributions of medical variables using generalized Beta regression

Medbetareg is an R package implementing the methodology proposed in the article:

A. Magrini, D. Luciani, F. M. Stefanini (2018). Generalized Beta regression to elicit conditional distributions of medical variables. Austrian Journal of Statistics, 47(3). https://doi.org/10.17713/ajs.v47i3.629

R (The R Project for Statistical Computing) needs to be installed on your system in order to use the Medbetareg package. R can be downloaded from https://www.r-project.org/.

To install the Medbetareg package, open the console of R and type:

install.packages("devtools")  ## do not run if package 'devtools' is already installed
library(devtools)
install_github("alessandromagrini/Medbetareg")

For any request or feedback, please write to alessandro.magrini@unifi.it (Alessandro Magrini)

Below, you find the code to replicate the results in the article.

Code for expert assessments (Table 1):

assess.test <- 'RESP RespRate (0,15,25,40);
  CEV intraShunt (0,2,5,100) 0.5 hp 0.5 hp 5;
  CEV deadSpace (0,0,30,100) 0.5 hp 0.5 hp 5;
  CEV extraShunt (0,0,5,100) 0.5 hp 0.5 hp 5;
  CEV redAlvSpace (0,0,5,100) 0.5 hp 0.5 hp 5;
  BEV Panic 0.25 hp 25;
  BEV Neuromusc 0.6 lp 100;
  INTER intraShunt deadSpace 0.9 hp 5;
  TAU 0.3 n'

Computation of the prior:

set.seed(10)
prior.test <- newPrior(assess.test, nrep=5000)

Marginal quantile summaries of the prior (Table 2):

summary(prior.test)

Probability density of the predictive distributions inspected during the revision of the prior (Figure 5):

set.seed(10)
predictive(prior.test, xcfg1, nrep=50000, title="Configuration 1")
set.seed(10)
predictive(prior.test, xcfg2, nrep=50000, title="Configuration 2")
set.seed(10)
predictive(prior.test, xcfg3, nrep=50000, title="Configuration 3")
set.seed(10)
predictive(prior.test, xcfg4, nrep=50000, title="Configuration 4")


alessandromagrini/Medbetareg documentation built on March 7, 2021, 4:54 p.m.