Elicitation of conditional distributions of medical variables using generalized Beta regression
Medbetareg
is an R package implementing the methodology proposed in the article:
A. Magrini, D. Luciani, F. M. Stefanini (2018). Generalized Beta regression to elicit conditional distributions of medical variables. Austrian Journal of Statistics, 47(3). https://doi.org/10.17713/ajs.v47i3.629
R (The R Project for Statistical Computing) needs to be installed on your system in order
to use the Medbetareg
package. R can be downloaded from https://www.r-project.org/.
To install the Medbetareg
package, open the console of R and type:
install.packages("devtools") ## do not run if package 'devtools' is already installed
library(devtools)
install_github("alessandromagrini/Medbetareg")
For any request or feedback, please write to alessandro.magrini@unifi.it (Alessandro Magrini)
Below, you find the code to replicate the results in the article.
Code for expert assessments (Table 1):
assess.test <- 'RESP RespRate (0,15,25,40);
CEV intraShunt (0,2,5,100) 0.5 hp 0.5 hp 5;
CEV deadSpace (0,0,30,100) 0.5 hp 0.5 hp 5;
CEV extraShunt (0,0,5,100) 0.5 hp 0.5 hp 5;
CEV redAlvSpace (0,0,5,100) 0.5 hp 0.5 hp 5;
BEV Panic 0.25 hp 25;
BEV Neuromusc 0.6 lp 100;
INTER intraShunt deadSpace 0.9 hp 5;
TAU 0.3 n'
Computation of the prior:
set.seed(10)
prior.test <- newPrior(assess.test, nrep=5000)
Marginal quantile summaries of the prior (Table 2):
summary(prior.test)
Probability density of the predictive distributions inspected during the revision of the prior (Figure 5):
set.seed(10)
predictive(prior.test, xcfg1, nrep=50000, title="Configuration 1")
set.seed(10)
predictive(prior.test, xcfg2, nrep=50000, title="Configuration 2")
set.seed(10)
predictive(prior.test, xcfg3, nrep=50000, title="Configuration 3")
set.seed(10)
predictive(prior.test, xcfg4, nrep=50000, title="Configuration 4")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.