fdatest-package: Interval Testing Procedure for Functional Data

Description Details Author(s) References See Also Examples

Description

Implementation of the Interval Testing Procedure for functional data in different frameworks (i.e., one or two-population frameworks, functional linear models) by means of different basis expansions (i.e., B-spline, Fourier, and phase-amplitude Fourier). The current version of the package requires functional data evaluated on a uniform grid; it automatically projects each function on a chosen functional basis; it performs the entire family of multivariate tests; and, finally, it provides the matrix of the p-values of the previous tests and the vector of the corrected p-values. The functional basis, the coupled or uncoupled scenario, and the kind of test can be chosen by the user. The package provides also a plotting function creating a graphical output of the procedure: the p-value heat-map, the plot of the corrected p-values, and the plot of the functional data.

Details

Package: fdatest
Type: Package
Version: 2.1
Date: 2015-02-05
License: GPL-2

Author(s)

Alessia Pini, Simone Vantini

Maintainer: Alessia Pini <[email protected]>

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Controlling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

K. Abramowicz, S. De Luna, C. Häger, A. Pini, L. Schelin, and S. Vantini (2015). Distribution-Free Interval-Wise Inference for Functional-on-Scalar Linear Models. MOX-report 3/2015, Politecnico di Milano.

See Also

See also ITP1bspline, ITP1fourier, ITP2bspline, ITP2fourier, ITP2pafourier, ITPlmbspline, ITPaovbspline, and ITPimage.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Importing the NASA temperatures data set
data(NASAtemp)

# Example 1:
# Performing the ITP for one population with the Fourier basis
ITP.result <- ITP1fourier(NASAtemp$milan,maxfrequency=10,B=1000)
# Plotting the results of the ITP
plot(ITP.result)

# Plotting the p-value heatmap
ITPimage(ITP.result)

# Selecting the significant coefficients
which(ITP.result$corrected.pval < 0.05)

# Example 2:
# Performing the ITP for two populations with the B-spline basis
ITP.result <- ITP2bspline(NASAtemp$milan,NASAtemp$paris,nknots=20,B=1000)
# Plotting the results of the ITP
plot(ITP.result)

# Plotting the p-values heatmap
ITPimage(ITP.result)

# Selecting the significant components for the radius at 5% level
which(ITP.result$corrected.pval < 0.05)


# Example 3:
# Fitting and testing a functional-on-scalar linear model
# Defining data and covariates
temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the ITP
ITP.result <- ITPlmbspline(temperature ~ groups,B=1000,nknots=20,order=3)
# Summary of the ITP results
summary(ITP.result)

# Plot of the ITP results
layout(1)
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

# All graphics on the same device
layout(matrix(1:6,nrow=3,byrow=FALSE))
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

alessiapini/fdatest documentation built on May 9, 2019, 1:06 a.m.