library(dplyr) knitr::opts_chunk$set(echo = FALSE)
Understanding how DNA methylation affects/predicts gene expression in heterogeneous patient populations.
Suppose for some patient population we have:
We are interested in:
Goal: Correctly cluster observations & regress in high dimensional $X$ & $Y$.
$$ f\left(\boldsymbol{y}{i} \mid \boldsymbol{x}{\boldsymbol{i}} ; \boldsymbol{\theta}\right)=\Sigma_{k=1}^{K} \pi_{k} \mathcal{N}{q}\left(\boldsymbol{y}{\boldsymbol{i}} ; \boldsymbol{x}{\boldsymbol{i}} A{k}, \Sigma_{k}\right) $$



While not converged ($m=1,\ldots, M$) do:
Finally, combine $X$ & $Y$
data <- readr::read_rds("G:/My Drive/Dissertation/HTH Mixture/hthmixture/results/20210415_slide_results.rds") data %>% slice(1:12) %>% knitr::kable(format = "latex", digits = 2)
data %>% slice(13:24) %>% knitr::kable(format = "latex", digits = 2)
In simulated data, current algorithm clusters well (perfectly in most cases given enough chains)
Challenges:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.