tam.jml | R Documentation |
This function estimate unidimensional item response models with joint maximum likelihood (JML, see e.g. Linacre, 1994).
tam.jml(resp, group=NULL, adj=.3, disattenuate=FALSE, bias=TRUE,
xsi.fixed=NULL, xsi.inits=NULL, theta.fixed=NULL, A=NULL, B=NULL, Q=NULL,
ndim=1, pweights=NULL, constraint="cases", verbose=TRUE, control=list(), version=3,
theta_proc=NULL)
## S3 method for class 'tam.jml'
summary(object, file=NULL, ...)
## S3 method for class 'tam.jml'
logLik(object, ...)
resp |
A matrix of item responses. Missing responses must be declared
as |
group |
An optional vector of group identifier |
disattenuate |
An optional logical indicating whether the person parameters should be disattenuated due to unreliability? The disattenuation is conducted by applying the Kelley formula. |
adj |
Adjustment constant which is subtracted or added to extreme scores (score of zero or maximum score). The default is a value of 0.3 |
bias |
A logical which indicates if JML bias should be reduced
by multiplying item parameters by the adjustment factor
of |
xsi.fixed |
An optional matrix with two columns for fixing some of the
basis parameters |
xsi.inits |
An optional vector of initial |
theta.fixed |
Matrix for fixed person parameters |
A |
A design array |
B |
A design array for scoring item category responses.
Entries in |
Q |
A Q-matrix which defines loadings of items on dimensions. |
ndim |
Number of dimensions in the model. The default is 1. |
pweights |
An optional vector of person weights. |
constraint |
Type of constraint for means. Either |
verbose |
Logical indicating whether output should
be printed during iterations. This argument replaces |
control |
A list of control arguments. See |
version |
Version function which should be used. |
theta_proc |
Function for processing |
object |
Object of class |
file |
A file name in which the summary output will be written
(only for |
... |
Further arguments to be passed |
A list with following entries
item1 |
Data frame with item parameters |
xsi |
Vector of item parameters |
errorP |
Standard error of item parameters |
theta |
MLE in final step |
errorWLE |
Standard error of WLE |
WLE |
WLE in last iteration |
WLEreliability |
WLE reliability |
PersonScores |
Scores for each person (sufficient statistic) |
ItemScore |
Sufficient statistic for each item parameter |
PersonMax |
Maximum person score |
ItemMax |
Maximum item score |
deviance |
Deviance |
deviance.history |
Deviance history in iterations |
resp |
Original data frame |
resp.ind |
Response indicator matrix |
group |
Vector of group identifiers (if provided as an argument) |
pweights |
Vector of person weights |
A |
Design matrix |
B |
Loading (or scoring) matrix |
nitems |
Number of items |
maxK |
Maximum number of categories |
nstud |
Number of persons in |
resp.ind.list |
Like |
xsi.fixed |
Fixed |
control |
Control list |
item |
Extended data frame of item parameters |
theta_summary |
Summary of person parameters |
... |
This joint maximum likelihood estimation procedure should be compatible with Winsteps and Facets software, see also http://www.rasch.org/software.htm.
Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.
For estimating the same class of models with marginal
maximum likelihood estimation see tam.mml
.
#############################################################################
# EXAMPLE 1: Dichotomous data
#############################################################################
data(data.sim.rasch)
resp <- data.sim.rasch[1:700, seq( 1, 40, len=10) ] # subsample
# estimate the Rasch model with JML (function 'tam.jml')
mod1a <- TAM::tam.jml(resp=resp)
summary(mod1a)
itemfit <- TAM::tam.fit(mod1a)$fit.item
# compare results with Rasch model estimated by MML
mod1b <- TAM::tam.mml(resp=resp )
# constrain item difficulties to zero
mod1c <- TAM::tam.jml(resp=resp, constraint="items")
# plot estimated parameters
plot( mod1a$xsi, mod1b$xsi$xsi, pch=16,
xlab=expression( paste( xi[i], " (JML)" )),
ylab=expression( paste( xi[i], " (MML)" )),
main="Item Parameter Estimate Comparison")
lines( c(-5,5), c(-5,5), col="gray" )
# Now, the adjustment pf .05 instead of the default .3 is used.
mod1d <- TAM::tam.jml(resp=resp, adj=.05)
# compare item parameters
round( rbind( mod1a$xsi, mod1d$xsi ), 3 )
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] -2.076 -1.743 -1.217 -0.733 -0.338 0.147 0.593 1.158 1.570 2.091
## [2,] -2.105 -1.766 -1.233 -0.746 -0.349 0.139 0.587 1.156 1.574 2.108
# person parameters for persons with a score 0, 5 and 10
pers1 <- data.frame( "score_adj0.3"=mod1a$PersonScore, "theta_adj0.3"=mod1a$theta,
"score_adj0.05"=mod1d$PersonScore, "theta_adj0.05"=mod1d$theta )
round( pers1[ c(698, 683, 608), ],3 )
## score_adj0.3 theta_adj0.3 score_adj0.05 theta_adj0.05
## 698 0.3 -4.404 0.05 -6.283
## 683 5.0 -0.070 5.00 -0.081
## 608 9.7 4.315 9.95 6.179
## Not run:
#*** item fit and person fit statistics
fmod1a <- TAM::tam.jml.fit(mod1a)
head(fmod1a$fit.item)
head(fmod1a$fit.person)
#*** Models in which some item parameters are fixed
xsi.fixed <- cbind( c(1,3,9,10), c(-2, -1.2, 1.6, 2 ) )
mod1e <- TAM::tam.jml( resp=resp, xsi.fixed=xsi.fixed )
summary(mod1e)
#*** Model in which also some person parameters theta are fixed
# fix theta parameters of persons 2, 3, 4 and 33 to values -2.9, ...
theta.fixed <- cbind( c(2,3,4,33), c( -2.9, 4, -2.9, -2.9 ) )
mod1g <- TAM::tam.jml( resp=resp, xsi.fixed=xsi.fixed, theta.fixed=theta.fixed )
# look at estimated results
ind.person <- c( 1:5, 30:33 )
cbind( mod1g$WLE, mod1g$errorWLE )[ind.person,]
#############################################################################
# EXAMPLE 2: Partial credit model
#############################################################################
data(data.gpcm, package="TAM")
dat <- data.gpcm
# JML estimation
mod2 <- TAM::tam.jml(resp=dat)
mod2$xsi # extract item parameters
summary(mod2)
TAM::tam.fit(mod2) # item and person infit/outfit statistic
#* estimate rating scale model
A <- TAM::designMatrices(resp=dat, modeltype="RSM")$A
#* estimate model with design matrix A
mod3 <- TAM::tam.jml(dat, A=A)
summary(mod3)
#############################################################################
# EXAMPLE 3: Facet model estimation using joint maximum likelihood
# data.ex10; see also Example 10 in ?tam.mml
#############################################################################
data(data.ex10)
dat <- data.ex10
## > head(dat)
## pid rater I0001 I0002 I0003 I0004 I0005
## 1 1 0 1 1 0 0
## 1 2 1 1 1 1 0
## 1 3 1 1 1 0 1
## 2 2 1 1 1 0 1
## 2 3 1 1 0 1 1
facets <- dat[, "rater", drop=FALSE ] # define facet (rater)
pid <- dat$pid # define person identifier (a person occurs multiple times)
resp <- dat[, -c(1:2) ] # item response data
formulaA <- ~ item * rater # formula
# use MML function only to restructure data and input obtained design matrices
# and processed response data to tam.jml (-> therefore use only 2 iterations)
mod3a <- TAM::tam.mml.mfr( resp=resp, facets=facets, formulaA=formulaA,
pid=dat$pid, control=list(maxiter=2) )
# use modified response data mod3a$resp and design matrix mod3a$A
resp1 <- mod3a$resp
# JML
mod3b <- TAM::tam.jml( resp=resp1, A=mod3a$A, control=list(maxiter=200) )
#############################################################################
# EXAMPLE 4: Multi faceted model with some anchored item and person parameters
#############################################################################
data(data.exJ03)
resp <- data.exJ03$resp
X <- data.exJ03$X
#*** (0) preprocess data with TAM::tam.mml.mfr
mod0 <- TAM::tam.mml.mfr( resp=resp, facets=X, pid=X$rater,
formulaA=~ leader + item + step,
control=list(maxiter=2) )
summary(mod0)
#*** (1) estimation with tam.jml (no parameter fixings)
# extract processed data and design matrix from tam.mml.mfr
resp1 <- mod0$resp
A1 <- mod0$A
# estimate model with tam.jml
mod1 <- TAM::tam.jml( resp=resp1, A=A1, control=list( Msteps=4, maxiter=100 ) )
summary(mod1)
#*** (2) fix some parameters (persons and items)
# look at indices in mod1$xsi
mod1$xsi
# fix step parameters
xsi.index1 <- cbind( 21:25, c( -2.44, 0.01, -0.15, 0.01, 1.55 ) )
# fix some item parameters of items 1,2,3,6 and 13
xsi.index2 <- cbind( c(1,2,3,6,13), c(-2,-1,-1,-1.32, -1 ) )
xsi.index <- rbind( xsi.index1, xsi.index2 )
# fix some theta parameters of persons 1, 15 and 20
theta.fixed <- cbind( c(1,15,20), c(0.4, 1, 0 ) )
# estimate model, theta.fixed only works for version=1
mod2 <- TAM::tam.jml( resp=resp1, A=A1, xsi.fixed=xsi.fixed, theta.fixed=theta.fixed,
control=list( Msteps=4, maxiter=100) )
summary(mod2)
cbind( mod2$WLE, mod2$errorWLE )
#############################################################################
# EXAMPLE 5: Disconnected item design
#############################################################################
# define a disconnected design with two item sets,
# bit random allocation of persons to item sets
set.seed(878)
ind1 <- 1:1000 # indices persons group 1
ind2 <- 1001:3000 # indices persons group 2
I <- 10 # number of items
# simulate item responses
dat1 <- sirt::sim.raschtype( rnorm( length(ind1)), b=seq(-2,2,len=I) )
colnames(dat1) <- paste0("A", 100+1:I)
dat2 <- sirt::sim.raschtype( rnorm( length(ind2)), b=seq(-1,3,len=I) )
colnames(dat2) <- paste0("B", 100+1:I)
# merge datasets
dat <- plyr::rbind.fill(dat1, dat2)
summary(dat)
# define theta processing function
theta_proc <- function(theta){
theta[ind1,1] <- theta[ind1,1] - mean( theta[ind1,1] )
theta[ind2,1] <- theta[ind2,1] - mean( theta[ind2,1] )
return(theta)
}
# JML estimation
res <- TAM::tam.jml( dat, theta_proc=theta_proc )
# check means
stats::aggregate( res$theta, list(1:3000
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.