#' Fast fitting of Bayesian occupancy models
#'
#' The package implements the methods to fit Bayesian occupancy models as
#' described in Diana et al. (2021). The model performs estimate of temporal and
#' spatial trends in the occupancy probability and can incorporate covariates.
#' The inference is performed using the Polya-Gamma scheme for efficient inference.
#'
#' @details
#'
#' Example of the use of the package can be found in the vignette.
#'
#' @references Diana A., Dennis E., Matechou E. and B.J.T. Morgan.
#' Fast Bayesian inference for large occupancy datasets, using the Polya-Gamma scheme
#'
#' @useDynLib FastOccupancy
#' @importFrom Rcpp sourceCpp
#'
#' @examples
#' modelResults <- runModel(sampleData,
#' index_year = 1,
#' index_site = 2,
#' index_occ = 8,
#' index_spatial_x = 3,
#' index_spatial_y = 4,
#' covariates_psi_text = "5",
#' covariates_p_text = "6-7",
#' usingSpatial = TRUE,
#' gridStep = .2,
#' nchain = 1,
#' nburn = 100,
#' niter = 100)
#'
#' plotOccupancyIndex(modelResults)
#'
#' @docType package
#' @name FastOccupancy
NULL
#> NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.