The goal of gest is to create shrinkage estimates in a flexible and fast
way. This package is a convenient wrapper for the deconvolveR
package.
## Installation
You can install the released version of gest from CRAN with:
install.packages("gest")
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("alexhallam/gest")
In the example below we use the add_binom_gest
to calculate the
“g-estimates” which are shrinkage estimators. Full posterior
distributions are also calculated along with confidence intervals.
library(tibble)
library(gest)
set.seed(2017)
# simulate 200 random examples from a beta-binomial
obs <- 200
dat <- tibble(prob = rbeta(obs, 10, 50),
n = round(rlnorm(obs, 4, 2)) + 1,
x = rbinom(obs, n, prob))
result <- add_binom_gest(dat, x, n)
result
#> # A tibble: 200 x 8
#> prob n x .gest_dist .raw .gest .lo .hi
#> <dbl> <dbl> <int> <list> <dbl> <dbl> <dbl> <dbl>
#> 1 0.271 2 1 <tibble [99 x 2]> 0.5 0.18 0.14 0.22
#> 2 0.162 1 0 <tibble [99 x 2]> 0 0.17 0.13 0.21
#> 3 0.213 77 11 <tibble [99 x 2]> 0.143 0.16 0.13 0.18
#> 4 0.0829 57 6 <tibble [99 x 2]> 0.105 0.14 0.11 0.17
#> 5 0.163 117 23 <tibble [99 x 2]> 0.197 0.18 0.16 0.21
#> 6 0.193 934 191 <tibble [99 x 2]> 0.204 0.2 0.19 0.21
#> 7 0.0746 6 0 <tibble [99 x 2]> 0 0.16 0.12 0.19
#> 8 0.167 37 6 <tibble [99 x 2]> 0.162 0.17 0.14 0.2
#> 9 0.153 85 11 <tibble [99 x 2]> 0.129 0.15 0.12 0.17
#> 10 0.187 1205 226 <tibble [99 x 2]> 0.188 0.19 0.18 0.2
#> # ... with 190 more rows
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.