f.lik.cat: Calculate likelihood for categorical response

Description Usage Arguments Value

Description

Calculate likelihood for categorical response

Usage

1
2
3
4
5
6
f.lik.cat(theta, x, y = NA, kk, nn, dtype, fct1 = 1, fct2 = 1, nrp,
  nth = NA, nr.aa = 1, nr.bb = 1, model.ans, model.type, CES = NA,
  ttt = 0, twice = NA, alfa.length = 0, x.full = NA, fct1.full = NA,
  fct2.full = NA, ces.ans = 1, fct3 = 1, fct4 = 1, fct5 = 1,
  CES.cat = 1, decr.zz = TRUE, CES1 = CES1, CES2 = CES2, nn.tot, kk.tot,
  xx.tot = xx.tot, fct3.ref, track = FALSE)

Arguments

theta

numeric vector, the initial regression parameter values

x

numeric vector, the dose values

y

numeric vector, the response values

kk

vector of parameters?

nn

vector of total number

dtype

integer, determines the type of response

fct1

numeric, value for parameter a

fct2

numeric, value for parameter b

nrp

values?

nth

values?

nr.aa

values?

nr.bb

values?

model.ans

integer, type of response model, only 3 available

model.type

type of model

CES

numeric, value for the CES

ttt

numeric, time variable

twice

logical, if TRUE two parameters are dependent of the same covariate

alfa.length

length of alpha

x.full

numeric vector, the dose values

fct1.full

numeric, value for parameter a

fct2.full

numeric, value for parameter b

ces.ans

index type of benchmark response

fct3

numeric, value for parameter c

fct4

numeric, value for parameter d

fct5

numeric, value for parameter e

CES.cat

value

decr.zz

is z decreasing?

CES1

numeric, value for the first CES

CES2

numeric, value for the second CES

nn.tot

vector of total number

kk.tot

vector of parameters?

xx.tot

vector of concentrations

fct3.ref

reference for parameter 3

track

logical, if TRUE (FALSE by default) print the name of the function which is currently being run

Value

numeric value, minus the sum of the scores (total likelihood)


alfcrisci/bmdModeling documentation built on May 28, 2019, 12:32 a.m.