param_portf | R Documentation |
Create a named list of model parameters that can be passed into portfolio optimization functions.
param_portf(
method = "sharpem",
singmin = 1e-05,
dimax = 0L,
confl = 0.1,
alphac = 0,
rankw = FALSE,
centerw = FALSE,
scalew = "voltarget",
voltarget = 0.01
)
method |
A character string specifying the method for
calculating the portfolio weights (the default is |
singmin |
A numeric threshold level for discarding
small singular values in order to regularize the inverse of the
|
dimax |
An integer equal to the number of singular
values used for calculating the reduced inverse of the
|
confl |
The confidence level for calculating the quantiles of
returns (the default is |
alphac |
The shrinkage intensity of |
rankw |
A Boolean specifying whether the weights should
be ranked (the default is |
centerw |
A Boolean specifying whether the weights should
be centered (the default is |
scalew |
A character string specifying the method for
scaling the weights (the default is |
voltarget |
A numeric volatility target for scaling the
weights (the default is |
The function param_portf()
creates a named list of model parameters
that can be passed into portfolio optimization functions. For example
into the functions calc_weights()
and back_test()
.
See the function calc_weights()
for more details.
The function param_portf()
simplifies the creation of portfolio
optimization parameter lists. The users can create a parameter list with
the default values, or they can specify custom parameter values.
A named list of model parameters that can be passed into portfolio optimization functions.
## Not run:
# Create a default list of portfolio optimization parameters
controlv <- HighFreq::param_portf()
unlist(controlv)
# Create a custom list of portfolio optimization parameters
controlv <- HighFreq::param_portf(method="regular", dimax=4)
unlist(controlv)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.