W_matrix | R Documentation |
Estimates a weather covariable realized matrix with dimensions of q x k, for q environments and k covariables.
W_matrix(
env.data,
is.processed = FALSE,
id.names = NULL,
env.id = NULL,
var.id = NULL,
probs = NULL,
by.interval = NULL,
time.window = NULL,
names.window = NULL,
center = TRUE,
scale = TRUE,
sd.tol = 10,
statistic = NULL,
tol = 0.001,
QC = FALSE
)
env.data |
data.frame of environmental variables gotten from |
is.processed |
boolean. Indicates whether the dataframe was previously processed with |
id.names |
character. Indicates the name of the columns to be used as id for the environmental variables to be analysed. |
env.id |
character. Indicates the name of the columns to be used as id for environments. |
var.id |
vector (character). Indicates which variables will be used in the analysis. |
probs |
vector(numeric). Indicates the probability quantiles, as probs = 0,1, if cardinals is NULL. If is quantiles=NULL, quantiles = c(0.01,.25,.50,.99). |
by.interval |
boolean. Indicates if temporal intervals must be computed insied of each environment. Default = FALSE. |
time.window |
vector (numeric). If |
names.window |
vector(character). If by.interval = TRUE, this argument indicates the names of the desirable intervals. |
center |
boolean. Indicates whether the matrix should be centered. |
scale |
boolean. If scale=TRUE, the variables assume a mean-centered scaled distribution, with |
sd.tol |
numeric. Default value equal to 10. |
statistic |
vector (character). Indicates what statistic must be runned, statistic = c('all','sum','mean','quantile'). Default: 'mean'. |
tol |
TODO. |
QC |
boolean. Indicates with Quality Control is applied. QC is based on the standard deviation tolerance (sd.tol), removing variables (x) with sd(x) > sd.tol |
TODO
Returns an environmental covariable realized matrix with dimensions of q x k, for q environments and k covariables.
Germano Costa Neto
## Not run:
data("maizeWTH")
env.data = maizeWTH[maizeWTH$daysFromStart < 100,]
### Mean-centered and scaled matrix
W <- W_matrix(env.data = env.data)
### Same as SummaryWTH, we can add time.windows
W <- W_matrix(env.data = env.data, by.interval = TRUE,
time.window = c(0, 14, 35, 60, 90, 120))
### Selecting statistic to be used
W <- W_matrix(env.data = env.data, by.interval = TRUE, statistic = 'mean',
time.window = c(0, 14, 35, 60, 90, 120))
W <- W_matrix(env.data = env.data, by.interval = TRUE, statistic = 'quantile',
time.window = c(0, 14, 35, 60, 90, 120))
### With Quality Control (QC) based on the maximum sd tolerated
W <- W_matrix(env.data = env.data, by.interval = FALSE, QC = TRUE)
### With Quality Control (QC) based on the maximum sd tolerated
W <- W_matrix(env.data = env.data, by.interval = FALSE, QC = TRUE, sd.tol = 3)
### Creating W for specific variables
id.var = c('T2M_MAX','T2M_MIN','T2M')
W <- W_matrix(env.data = env.data, var.id = id.var)
### Combining summaryWTH by using is.processed = TRUE
data <- summaryWTH(env.data, env.id = 'env', statistic = 'quantile')
W <- W_matrix(env.data = data, is.processed = TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.