mv_simulate: Simulate multi-view data

Description Usage Arguments Value Examples

View source: R/SimulatedData.R

Description

Generate simulated multi-view data to illustrate the agglomerative and splitting versions of the multi-view K-means algorithm.

Usage

1
2
3
4
5
6
7
8
mv_simulate(
  beta = 4,
  n = 100,
  K = 7,
  sigma = 1.5,
  beta_V6_multiplier = 1.5,
  ...
)

Arguments

beta

Multiplicative factor controlling the spread of values around the origin in the first (beta), second (beta), and sixth (beta_V6_multiplier x beta) views. Defaults to 4.

n

Number of observations per cluster for simulations. Defaults to 100.

K

Number of clusters in the first view for simulations. As this view is made up of a single cluster at the origin surrounded by evenly spaced clusters in a circular pattern around it, this number should be odd. Defaults to 7.

sigma

Variance of noise to be added to views 2, 4, 5, and 6. Defaults to 1.5.

beta_V6_multiplier

Multiplicative parameter for the spread of values around the origin in view 6 (beta_V6_multiplier x beta). Defaults to 1.5.

...

Additional optional parameters.

Value

data

Multi-view simulated data

labels

Matrix of dimension n x v, where n is the number of observations and v the number of views, representing the true labels used to generate the data

Examples

1
2
3
4
5
6
7
8
set.seed(12345)
sim_1 <- mv_simulate(type = "D1")
sim_2 <- mv_simulate(type = "D2")
sim_3 <- mv_simulate(type = "D3")
sim_4 <- mv_simulate(type = "D4")
sim_5 <- mv_simulate(type = "D5")
sim_6a <- mv_simulate(type = "D6")
sim_6b <- mv_simulate(type = "D6", delta=7, n=200, K=5, sigma=0.5)

andreamrau/maskmeans documentation built on Nov. 13, 2021, 7:44 a.m.