rpl_loglike | R Documentation |
par is a vector of mean parameters followed by Fisher-transformed correlation parameters
rpl_loglike(
par,
mydata,
pi = 1,
offsets = NULL,
block_indices = NULL,
seed = NULL,
count_pairs = FALSE,
parallel = FALSE,
BPPARAM = ifelse(parallel, bpparam(), NULL)
)
par |
Vector providing parameter values (means followed by correlations) |
mydata |
Data matrix |
pi |
Bernoulli sampling parameter (0 < pi <= 1) |
offsets |
If needed, a matrix of offsets (optional) |
block_indices |
List of vectors providing indices for each block for blockwise exchangeable correlation matrices |
seed |
Seed to use for random number generation |
count_pairs |
If |
parallel |
If |
BPPARAM |
If |
Negative log-likelihood for user-provided parameter vector,
calculated with the randomized pairwise likelihood approach.
If count_pairs = TRUE
, counts of the number of observations used
for each pair are also returned.
Mazo, G., Karlis, D., Rau, A. (2021) A randomized pairwise likelihood method for complex statistical inferences. In revision. hal-03126621.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.