rpl_loglike: Fisher transformation applied within function

View source: R/functions.R

rpl_loglikeR Documentation

Fisher transformation applied within function

Description

par is a vector of mean parameters followed by Fisher-transformed correlation parameters

Usage

rpl_loglike(
  par,
  mydata,
  pi = 1,
  offsets = NULL,
  block_indices = NULL,
  seed = NULL,
  count_pairs = FALSE,
  parallel = FALSE,
  BPPARAM = ifelse(parallel, bpparam(), NULL)
)

Arguments

par

Vector providing parameter values (means followed by correlations)

mydata

Data matrix

pi

Bernoulli sampling parameter (0 < pi <= 1)

offsets

If needed, a matrix of offsets (optional)

block_indices

List of vectors providing indices for each block for blockwise exchangeable correlation matrices

seed

Seed to use for random number generation

count_pairs

If TRUE, return the number of observations retained for each pair of variables used in the randomized pairwise likelihood

parallel

If TRUE, some computations are parallelized with the BiocParallel package

BPPARAM

If parallel=TRUE, the registry of back-ends for use in parallelized calculations

Value

Negative log-likelihood for user-provided parameter vector, calculated with the randomized pairwise likelihood approach. If count_pairs = TRUE, counts of the number of observations used for each pair are also returned.

References

Mazo, G., Karlis, D., Rau, A. (2021) A randomized pairwise likelihood method for complex statistical inferences. In revision. hal-03126621.


andreamrau/rpl documentation built on April 26, 2023, 3:57 p.m.