knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/" ) options(width=100) library(utsData)
This package provides example datasets of univariate and multivariate unevenly spaced time series:
The data can be loaded, viewed, plotted, and analyzed using the uts, utsMultivariate, and utsTrendSeasonality (coming soon) R
packages.
This package is not yet available on CRAN, but can be installled from GitHub, either using the R
package devtools:
devtools::install_github("andreas50/uts", build_vignettes=TRUE) devtools::install_github("andreas50/utsMultivariate") devtools::install_github("andreas50/utsData")
or using the R
package remotes:
remotes::install_github("andreas50/uts") remotes::install_github("andreas50/utsMultivariate") remotes::install_github("andreas50/utsData")
# Mauna Loa atmospheric CO2 concentration par(mai=c(0.5, 0.5, 0.2, 0.2)) plot(co2_ml, cex.axis=0.8) # Most consecutive observations are one month apart table(round(diff(time(co2_ml)) / 365 * 12))
# Grape harvest dates (relative to August 31st) for Bordeaux region # -) observations less than 2 years apart are connected by a line in the polot par(mai=c(0.5, 0.5, 0.2, 0.2)) plot(grapes$Bordeaux, max_dt=dyears(2), type="o", cex=0.5, cex.axis=0.8) # Same, but plot 20-year two-sided rolling average if (requireNamespace("utsOperators", quietly=TRUE)) { plot(utsOperators::rolling_apply(grapes$Burgundy, width=dyears(20), FUN=mean, align="center"), cex.axis=0.8) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.