Description Usage Arguments Value Author(s) See Also Examples
Make predictions of missing methylation states, i.e. perfrom
imputation using Melissa. This requires keepin a subset of data as a held
out test set during Melissa inference. If you want to impute a whole
directory containing cells (files) with missing methylation levels, see
impute_met_files.
1 2 3 4 5 6 7  | impute_test_met(
  obj,
  test,
  basis = NULL,
  is_predictive = TRUE,
  return_test = FALSE
)
 | 
obj | 
 Output of Melissa inference object.  | 
test | 
 Test data to evaluate performance.  | 
basis | 
 Basis object, if NULL we perform imputation using Melissa, otherwise using BPRMeth.  | 
is_predictive | 
 Logical, use predictive distribution for imputation, or choose the cluster label with the highest responsibility.  | 
return_test | 
 Whether or not to return a list with the predictions.  | 
A list containing two vectors, the true methylation state and the predicted/imputed methylation states.
C.A.Kapourani C.A.Kapourani@ed.ac.uk
create_melissa_data_obj, melissa,
filter_regions, eval_imputation_performance,
eval_cluster_performance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  | # Extract synthetic data
dt <- melissa_synth_dt
# Partition to train and test set
dt <- partition_dataset(dt)
# Create basis object from BPRMeth package
basis_obj <- BPRMeth::create_rbf_object(M = 3)
# Run Melissa
melissa_obj <- melissa(X = dt$met, K = 2, basis = basis_obj, vb_max_iter=10,
   vb_init_nstart = 1, is_parallel = FALSE, is_verbose = FALSE)
imputation_obj <- impute_test_met(obj = melissa_obj,
                                   test = dt$met_test)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.