#' Figure S14_Survival_METABRIC
#'
#' This function allows you generate figure S14_Survival_METABRIC.
#'
#' @keywords RNAseq ZMIZ1
#' @examples figureS14_Survival_METABRIC()
#' @import survival
#' @import survminer
#' @export
figureS14_Survival_METABRIC <- function() {
filename<-system.file("extdata",
"PATIENT_DATA_oncoprint.tsv",
package = "ZMIZ1")
survival<-data.frame(t(read.csv(filename,sep="\t")),stringsAsFactors = FALSE)
survival<-survival[-1:-2,]
survival[,5]<-as.numeric(survival[,5])
colnames(survival)[5]<-'time'
colnames(survival)[6]<-'status'
colnames(survival)[4]<-'ER'
colnames(survival)[12]<-'Expression'
survivalFiltered<-survival[survival$ER=="Positive",]
survivalFiltered<-survivalFiltered[!is.na(survivalFiltered$status==''),]
survivalFiltered[survivalFiltered$status=='LIVING',]$status<-'0'
survivalFiltered[survivalFiltered$status=='DECEASED',]$status<-'1'
survivalFiltered$status<- as.numeric(survivalFiltered$status)
survivalFiltered$Expression<-as.numeric(survivalFiltered$Expression)
#<-median(survivalFiltered$Expression)-1>survivalFiltered$Expression
res.cut<-surv_cutpoint(survivalFiltered, time = "time", event = "status", "Expression",
minprop = 0.1, progressbar = TRUE)
summary(res.cut)
plot(res.cut,"Expression",palette="npg")
res.cat <- surv_categorize(res.cut)
head(res.cat)
fit <- survfit(Surv(time, status) ~Expression, data = res.cat)
p<-ggsurvplot(fit, data = res.cat, risk.table = TRUE, conf.int = TRUE)
p
summary(fit)
surv_pvalue(fit )
#variable pval method pval.txt
#1 Expression 6.819809e-07 Log-rank p < 0.0001
return(p);
}
#' Figure S14_Survival_TCGA
#'
#' This function allows you generate figure S14_Survival_TCGA.
#'
#' @keywords RNAseq ZMIZ1
#' @examples figureS14_Survival_TCGA()
#' @import survival
#' @import survminer
#' @export
figureS14_Survival_TCGA <- function() {
filename<-system.file("extdata",
"PATIENT_DATA_oncoprint_tcga.tsv",
package = "ZMIZ1")
survival<-data.frame(t(read.csv(filename,sep="\t")),stringsAsFactors = FALSE)
survival<-survival[-1:-2,]
survival[,4]<-as.numeric(survival[,4])
colnames(survival)[4]<-'time'
colnames(survival)[5]<-'status'
colnames(survival)[3]<-'ER'
colnames(survival)[11]<-'Expression'
survivalFiltered<-survival[survival$ER=="Positive",]
survivalFiltered<-survivalFiltered[!is.na(survivalFiltered$status==''),]
survivalFiltered[survivalFiltered$status=='LIVING',]$status<-'0'
survivalFiltered[survivalFiltered$status=='DECEASED',]$status<-'1'
survivalFiltered$status<- as.numeric(survivalFiltered$status)
survivalFiltered$Expression<-as.numeric(survivalFiltered$Expression)
#<-median(survivalFiltered$Expression)-1>survivalFiltered$Expression
res.cut<-surv_cutpoint(survivalFiltered, time = "time", event = "status", "Expression",
minprop = 0.1, progressbar = TRUE)
summary(res.cut)
plot(res.cut,"Expression",palette="npg")
res.cat <- surv_categorize(res.cut)
head(res.cat)
library("survival")
fit <- survfit(Surv(time, status) ~Expression, data = res.cat)
p<-ggsurvplot(fit, data = res.cat, risk.table = TRUE, conf.int = TRUE)
p
summary(fit)
surv_pvalue(fit )
# variable pval method pval.txt
#1 Expression 0.001781372 Log-rank p = 0.0018
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.