knitr::opts_chunk$set(fig.width = 8, fig.height = 5)
Note: The type argument in generate() is automatically filled based on the entries for specify() and
hypothesize(). It can be removed throughout the examples that follow. It is left in to reiterate the type of generation process being performed.
library(infer) library(dplyr) mtcars <- mtcars %>% mutate(cyl = factor(cyl), vs = factor(vs), am = factor(am), gear = factor(gear), carb = factor(carb)) # For reproducibility set.seed(2018)
One numerical variable (mean)
mtcars %>% specify(response = mpg) %>% # formula alt: mpg ~ NULL hypothesize(null = "point", mu = 25) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "mean")
One numerical variable (median)
mtcars %>% specify(response = mpg) %>% # formula alt: mpg ~ NULL hypothesize(null = "point", med = 26) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "median")
One categorical (2 level) variable
mtcars %>% specify(response = am, success = "1") %>% # formula alt: am ~ NULL hypothesize(null = "point", p = .25) %>% generate(reps = 100, type = "simulate") %>% calculate(stat = "prop")
Two categorical (2 level) variables
mtcars %>% specify(am ~ vs, success = "1") %>% # alt: response = am, explanatory = vs hypothesize(null = "independence") %>% generate(reps = 100, type = "permute") %>% calculate(stat = "diff in props", order = c("0", "1"))
One categorical (>2 level) - GoF
mtcars %>% specify(cyl ~ NULL) %>% # alt: response = cyl hypothesize(null = "point", p = c("4" = .5, "6" = .25, "8" = .25)) %>% generate(reps = 100, type = "simulate") %>% calculate(stat = "Chisq")
Two categorical (>2 level) variables
mtcars %>% specify(cyl ~ am) %>% # alt: response = cyl, explanatory = am hypothesize(null = "independence") %>% generate(reps = 100, type = "permute") %>% calculate(stat = "Chisq")
One numerical variable one categorical (2 levels) (diff in means)
mtcars %>% specify(mpg ~ am) %>% # alt: response = mpg, explanatory = am hypothesize(null = "independence") %>% generate(reps = 100, type = "permute") %>% calculate(stat = "diff in means", order = c("0", "1"))
One numerical variable one categorical (2 levels) (diff in medians)
mtcars %>% specify(mpg ~ am) %>% # alt: response = mpg, explanatory = am hypothesize(null = "independence") %>% generate(reps = 100, type = "permute") %>% calculate(stat = "diff in medians", order = c("0", "1"))
One numerical one categorical (>2 levels) - ANOVA
mtcars %>% specify(mpg ~ cyl) %>% # alt: response = mpg, explanatory = cyl hypothesize(null = "independence") %>% generate(reps = 100, type = "permute") %>% calculate(stat = "F")
Two numerical vars - SLR
mtcars %>% specify(mpg ~ hp) %>% # alt: response = mpg, explanatory = cyl hypothesize(null = "independence") %>% generate(reps = 100, type = "permute") %>% calculate(stat = "slope")
One numerical variable (standard deviation)
Not currently implemented
mtcars %>% specify(response = mpg) %>% # formula alt: mpg ~ NULL hypothesize(null = "point", sigma = 5) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "sd")
One numerical (one mean)
mtcars %>% specify(response = mpg) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "mean")
One numerical (one median)
mtcars %>% specify(response = mpg) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "median")
One numerical (standard deviation)
mtcars %>% specify(response = mpg) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "sd")
One categorical (one proportion)
mtcars %>% specify(response = am, success = "1") %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "prop")
One numerical variable one categorical (2 levels) (diff in means)
mtcars %>% specify(mpg ~ am) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "diff in means", order = c("0", "1"))
Two categorical variables (diff in proportions)
mtcars %>% specify(am ~ vs, success = "1") %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "diff in props", order = c("0", "1"))
Two numerical vars - SLR
mtcars %>% specify(mpg ~ hp) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "slope")
Two numerical vars - correlation
mtcars %>% specify(mpg ~ hp) %>% generate(reps = 100, type = "bootstrap") %>% calculate(stat = "correlation")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.