impute_quality_check: Make plots for imputation result

Description Usage Arguments Value

View source: R/simulate_missingness.R

Description

Make plots for imputation result

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
impute_quality_check(
  filter_df,
  active_df,
  baseline_df,
  var_name,
  priority_miss_perc,
  n_round,
  seed,
  imp_func
)

Arguments

filter_df

filtered passive data

active_df

active data

baseline_df

baseline data

var_name

passive measurement variable name

priority_miss_perc

Percentage of observations per subject to be labeled as missing;1)value between 0 and 1: same percentage for each subject;2)NA: automatically according to missing percentage of each subject

n_round

number of times to randomly sample observations to be labeled

seed

fix seed so that simulation results are reproduceable

imp_func

the function of imputation method, available options now: #1) missForest :my_missForest; #2) moving average of 7 days: seven_moving_everage

Value

a data frame with imputation quality measurement metrics


andyyu6227/MH.datapipe documentation built on Jan. 1, 2022, 10:18 p.m.