Description Usage Arguments Details Value Author(s) Source References See Also Examples
Density, distribution function, quantile function and random generation
for the KumPar distribution with parameters lambda
, phi
,
beta
and k
.
1 2 3 4 5 6 7 8 9 |
x, q |
numeric vector of quantiles x > β. |
beta |
scale parameter β > 0. |
k |
shape parameter \k > 0. |
lambda |
shape parameter λ > 0. |
phi |
shape parameter φ ≥ 0. |
log, log.p |
logical; if |
lower.tail |
logical; if |
n |
desired size of the random number sample. |
cens.prop |
proportion of censored data to be simulated. If greater than |
The KumLL distribution was described by Pereira et al (2012) and has density
f(x) = (λφkβ^k)/(x^(k+1))(1-(β/x)^k)^(λ-1) (1-(1-(β/x)^k)^λ)^(φ-1)
for x > β and with scale parameter β, shape parameters λ, φ and k.
The parameters λ and phi, come from the Kumaraswamy Generalized family introduced by Cordeiro and Castro (2011).
With phi = 1
KumPar becomes the Exponentiated Pareto distribution.
In addition, when lambda = 1
it becomes the Pareto distribution.
dkumpar
gives the density, pkumpar
gives the distribution
function, qkumpar
gives the quantile function, and rkumpar
generates random values.
The length of the result is determined by n
for rkumpar
, for the other fucntions the
length is the same as the vector passed to the first argument.
Only the first element of the logical arguments are used.
Anderson Neisse <a.neisse@gmail.com>
The source code of all distributions in this package can also be found on the survdistr Github repository.
PEREIRA, M. B.; SILVA, R. B.; ZEA, L. M.; CORDEIRO, G. M. The kumaraswamy Pareto distribution. arXiv preprint arXiv:1204.1389, 2012.
CORDEIRO, G. M.; DE CASTRO, M. A new family of generalized distributions. Journal of statistical computation and simulation, 2011, 81.7: 883-898.
LINK TO OTHER PACKAGE DISTRIBUTIONS
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.