lambdaOpt | R Documentation |
Computes the optimal lambda calibration parameter used in the critical vector criticalVector
.
lambdaOpt(pvalues, family, alpha = 0.05, delta = 0, step.down = FALSE,
max.step = 10, m = NULL)
pvalues |
Matrix of |
family |
String character. Name of the family confidence envelope to compute the critical vector
from |
alpha |
Numeric value in '[0,1]'. |
delta |
Numeric value. |
step.down |
Boolean value. Default to |
max.step |
Numeric value. Default to 10. Maximum number of steps for the step down approach, so useful when |
m |
Numeric value. Number of hypotheses. Default to |
Numeric value. \lambda
parameter estimate.
Angela Andreella
Andreella, A., Hemerik, J., Finos, L., Weeda, W., & Goeman, J. (2023). Permutation-based true discovery proportions for functional magnetic resonance imaging cluster analysis. Statistics in Medicine, 42(14), 2311-2340.
criticalVector
db <- simulateData(pi0 = 0.8, m = 100, n = 20, rho = 0)
out <- signTest(X = db)
pv <- cbind(out$pv, out$pv_H0)
cv <- lambdaOpt(pvalues = pv, family = "simes", alpha = 0.05)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.