sumSome-package | R Documentation |
It provides true discovery guarantees, using sum-based global statistics (sum of t-scores, p-value combinations, etc.). As main features, it produces permutation-based simultaneous lower confidence bounds for the proportion of active voxels in clusters for fMRI data, differentially expressed genes in pathways for gene expression data, and significant effects for multiverse analysis.
Anna Vesely and Xu Chen.
Maintainer: Anna Vesely <anna.vesely2@unibo.it>
Goeman J. J. and Solari A. (2011). Multiple testing for exploratory research. Statistical Science, doi: 10.1214/1-STS356.
Tian J., Chen X., Katsevich E., Goeman J. J. and Ramdas A. (2022). Large-scale simultaneous inference under dependence. Scandinavian Journal of Statistics, doi: 10.1111/sjos.12614.
Vesely A., Finos L., and Goeman J. J. (2023). Permutation-based true discovery guarantee by sum tests. Journal of the Royal Statistical Society, Series B (Statistical Methodology), doi: 10.1093/jrsssb/qkad019.
fMRI cluster analysis: brainScores
, brainPvals
, brainClusters
, brainAnalysis
Gene expression pathway analysis: geneScores
, genePvals
, geneAnalysis
Multiverse analysis: pimaAnalysis
General setting: sumStats
and sumPvals
(permutations), sumStatsPar
and sumPvalsPar
(parametric)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.