| Power-class | R Documentation |
This class represents the elementwise power function f(x) = x^p.
If expr is a CVXR expression, then expr^p is equivalent to Power(expr, p).
Power(x, p, max_denom = 1024)
## S4 method for signature 'Power'
to_numeric(object, values)
## S4 method for signature 'Power'
sign_from_args(object)
## S4 method for signature 'Power'
is_atom_convex(object)
## S4 method for signature 'Power'
is_atom_concave(object)
## S4 method for signature 'Power'
is_atom_log_log_convex(object)
## S4 method for signature 'Power'
is_atom_log_log_concave(object)
## S4 method for signature 'Power'
is_constant(object)
## S4 method for signature 'Power'
is_incr(object, idx)
## S4 method for signature 'Power'
is_decr(object, idx)
## S4 method for signature 'Power'
is_quadratic(object)
## S4 method for signature 'Power'
is_qpwa(object)
## S4 method for signature 'Power'
.grad(object, values)
## S4 method for signature 'Power'
.domain(object)
## S4 method for signature 'Power'
get_data(object)
## S4 method for signature 'Power'
copy(object, args = NULL, id_objects = list())
## S4 method for signature 'Power'
name(x)
x |
The Expression to be raised to a power. |
p |
A numeric value indicating the scalar power. |
max_denom |
The maximum denominator considered in forming a rational approximation of |
object |
A Power object. |
values |
A list of numeric values for the arguments |
idx |
An index into the atom. |
args |
A list of arguments to reconstruct the atom. If args=NULL, use the current args of the atom |
id_objects |
Currently unused. |
For p = 0, f(x) = 1, constant, positive.
For p = 1, f(x) = x, affine, increasing, same sign as x.
For p = 2,4,8,..., f(x) = |x|^p, convex, signed monotonicity, positive.
For p < 0 and f(x) =
x^p for x > 0
+\inftyx \leq 0
, this function is convex, decreasing, and positive.
For 0 < p < 1 and f(x) =
x^p for x \geq 0
-\inftyx < 0
, this function is concave, increasing, and positive.
For p > 1, p \neq 2,4,8,\ldots and f(x) =
x^p for x \geq 0
+\inftyx < 0
, this function is convex, increasing, and positive.
to_numeric(Power): Throw an error if the power is negative and cannot be handled.
sign_from_args(Power): The sign of the atom.
is_atom_convex(Power): Is p \leq 0 or p \geq 1?
is_atom_concave(Power): Is p \geq 0 or p \leq 1?
is_atom_log_log_convex(Power): Is the atom log-log convex?
is_atom_log_log_concave(Power): Is the atom log-log concave?
is_constant(Power): A logical value indicating whether the atom is constant.
is_incr(Power): A logical value indicating whether the atom is weakly increasing.
is_decr(Power): A logical value indicating whether the atom is weakly decreasing.
is_quadratic(Power): A logical value indicating whether the atom is quadratic.
is_qpwa(Power): A logical value indicating whether the atom is quadratic of piecewise affine.
.grad(Power): Gives the (sub/super)gradient of the atom w.r.t. each variable
.domain(Power): Returns constraints describng the domain of the node
get_data(Power): A list containing the output of pow_low, pow_mid, or pow_high depending on the input power.
copy(Power): Returns a shallow copy of the power atom
name(Power): Returns the expression in string form.
xThe Expression to be raised to a power.
pA numeric value indicating the scalar power.
max_denomThe maximum denominator considered in forming a rational approximation of p.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.