stability: Calculates stability values for results of 'lmInfl' and...

View source: R/stability.R

stabilityR Documentation

Calculates stability values for results of 'lmInfl' and 'lmThresh'

Description

This function calculates stability values for LOO (lmInfl), and response value shifting/addition (lmThresh).

Usage

stability(x, pval = FALSE, ...) 

Arguments

x

a result of either lmInfl or lmThresh.

pval

logical. If TRUE, for lmThresh, objects an exact p-value is calculated for a future response to reverse significance.

...

other parameters, not yet implemented.

Details

For results of lmInfl:
A [0, 1]-bounded stability measure S = 1-\frac{n}{N}, with n = number of influencers (significance reversers) and N = total number of response values.

For results of lmThresh:
A [0, 1]-bounded stability measure S = 1-\frac{n}{N}, with n = number of response values where one of the ends of the significance region is within the prediction interval and N = total number of response values.
If pval = TRUE, the exact p-value is calculated in the following manner:

1) Mean square error (MSE) and prediction standard error (se) are calculated from the linear model:

\mathrm{MSE} = ∑_{i=1}^n \frac{(y_i - \hat{y}_i)^2}{n-2} \quad\quad \mathrm{se}_i = √{\mathrm{MSE} \cdot ≤ft(1 + \frac{1}{n} + \frac{(x_i - \bar{x}_i)^2}{∑_{i=1}^n (x_i - \bar{x}_i)^2}\right)}

2) Upper and lower prediction intervals boundaries are calculated for each \hat{y}_i:

\hat{y}_i \pm Q_t(α/2, n-2) \cdot \rm{se}_i

The prediction interval around \hat{y}_i is a scaled/shifted t-distribution with density function

P_{tss}(y, n-2) = \frac{1}{\rm{se}_i} \cdot P_t≤ft(\frac{y - \hat{y}_i}{\rm{se}_i}, n-2\right)

, where P_t is the density function of the central, unit-variance t-distribution.
3) The probability of either shifting the response value (if lmThresh(..., newobs = FALSE)) or including a future response value y_{2i} (if lmThresh(..., newobs = TRUE)) to reverse the significance of the linear model is calculated as the integral between the end of the significance region (eosr) and the upper/lower α/2, 1-α/2 prediction interval:

P(\mathrm{reverse}) = \int_{\mathrm{eosr}}^{1-α/2} P_{tss}(y, n-2)dy \quad \mathrm{or} \quad \int_{α/2}^{\mathrm{eosr}} P_{tss}(y, n-2)dy

Value

The stability value.

Author(s)

Andrej-Nikolai Spiess

Examples

## See examples in 'lmInfl' and 'lmThresh'.

## The implemented strategy of calculating the
## probability of significance reversal, as explained above
## and compared to 'stabPlot'.
set.seed(125)
a <- 1:20
b <- 5 + 0.08 * a + rnorm(length(a), 0, 1)
LM1 <- lm(b ~ a)
res1 <- lmThresh(LM1, newobs = TRUE)
st1 <- stability(res1, pval = TRUE)

## Let's check that the prediction interval encompasses 95%:
dt.scaled <- function(x, df, mu, s) 1/s * dt((x - mu)/s, df)
integrate(dt.scaled, lower = st1$stats[1, "lower"], st1$stats[1, "upper"], 
          df = 18, mu = st1$stats[1, "fitted"], s = st1$stats[1, "se"])
## => 0.95 with absolute error < 8.4e-09

## This is the interval between "end of significance region" and upper 
## prediction boundary:
integrate(dt.scaled, lower = st1$stats[1, "eosr.2"], st1$stats[1, "upper"], 
          df = 18, mu = st1$stats[1, "fitted"], s = st1$stats[1, "se"])
## => 0.09264124 with absolute error < 1e-15

## We can recheck this value by P(B) - P(A):
pt.scaled <- function(x, df, mu, s) pt((x - mu)/s, df)
pA <- pt.scaled(x = st1$stats[1, "eosr.2"], df =  18, mu = st1$stats[1, "fitted"], 
                s = st1$stats[1, "se"])
0.975 - pA 
##  => 0.09264124 as above

anspiess/reverseR documentation built on May 14, 2022, 9:43 a.m.