print.dynforest | R Documentation |
This function displays a brief summary regarding the trees (for class dynforest
), a data frame with variable importance (for class dynforestvimp
) or the grouped variable importance (for class dynforestgvimp
).
## S3 method for class 'dynforest'
print(x, ...)
## S3 method for class 'dynforestvimp'
print(x, ...)
## S3 method for class 'dynforestgvimp'
print(x, ...)
## S3 method for class 'dynforestvardepth'
print(x, ...)
## S3 method for class 'dynforestoob'
print(x, ...)
## S3 method for class 'dynforestpred'
print(x, ...)
x |
Object inheriting from classes |
... |
Optional parameters to be passed to the low level function |
dynforest()
compute_ooberror()
compute_vimp()
compute_gvimp()
compute_vardepth()
predict.dynforest()
data(pbc2)
# Get Gaussian distribution for longitudinal predictors
pbc2$serBilir <- log(pbc2$serBilir)
pbc2$SGOT <- log(pbc2$SGOT)
pbc2$albumin <- log(pbc2$albumin)
pbc2$alkaline <- log(pbc2$alkaline)
# Sample 100 subjects
set.seed(1234)
id <- unique(pbc2$id)
id_sample <- sample(id, 100)
id_row <- which(pbc2$id%in%id_sample)
pbc2_train <- pbc2[id_row,]
timeData_train <- pbc2_train[,c("id","time",
"serBilir","SGOT",
"albumin","alkaline")]
# Create object with longitudinal association for each predictor
timeVarModel <- list(serBilir = list(fixed = serBilir ~ time,
random = ~ time),
SGOT = list(fixed = SGOT ~ time + I(time^2),
random = ~ time + I(time^2)),
albumin = list(fixed = albumin ~ time,
random = ~ time),
alkaline = list(fixed = alkaline ~ time,
random = ~ time))
# Build fixed data
fixedData_train <- unique(pbc2_train[,c("id","age","drug","sex")])
# Build outcome data
Y <- list(type = "surv",
Y = unique(pbc2_train[,c("id","years","event")]))
# Run dynforest function
res_dyn <- dynforest(timeData = timeData_train, fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel, Y = Y,
ntree = 50, nodesize = 5, minsplit = 5,
cause = 2, ncores = 2, seed = 1234)
# Print function
print(res_dyn)
# Compute VIMP statistic
res_dyn_VIMP <- compute_vimp(dynforest_obj = res_dyn, ncores = 2, seed = 1234)
# Print function
print(res_dyn_VIMP)
# Compute gVIMP statistic
res_dyn_gVIMP <- compute_gvimp(dynforest_obj = res_dyn,
group = list(group1 = c("serBilir","SGOT"),
group2 = c("albumin","alkaline")),
ncores = 2, seed = 1234)
# Print function
print(res_dyn_gVIMP)
# Run var_depth function
res_varDepth <- compute_vardepth(res_dyn)
# Print function
print(res_varDepth)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.