The package auxPort provides various functions necessary fo cleaning stock data, optimizing portfolios, and evaluating their performance.
You can install this version of the package from Github with:
install.packages("devtools")
library(devtools)
install_github("antshi/auxPort")
These are basic examples to show you how to use the some of the functionality.
library(auxPort)
## Warning: replacing previous import 'CVXR::constraints<-' by 'ROI::constraints<-'
## when loading 'auxPort'
## Warning: replacing previous import 'CVXR::objective<-' by 'ROI::objective<-'
## when loading 'auxPort'
## Warning: replacing previous import 'CVXR::constraints' by 'ROI::constraints'
## when loading 'auxPort'
## Warning: replacing previous import 'CVXR::objective' by 'ROI::objective' when
## loading 'auxPort'
dates <- as.Date(sp500[,1], format="%d.%m.%Y", stringsAsFactors=FALSE)
find_weekends(dates)
## integer(0)
prices <- as.matrix(sp500[,-1])
find_nas(prices, all=FALSE)
## JEFFERSON.PILOT.DEAD...21.04.06
## 235
find_nas(prices, all=TRUE)
## integer(0)
returns <- sp500_rets[,-1]
Sigma <- cov(returns)
image(Sigma)
naive <- port_estim_naive(Sigma)
gmv <- port_estim_gmv(Sigma)
gmv_lasso <- port_estim_solver(Sigma, lambda1=0.0001)
matplot(cbind(naive, gmv, gmv_lasso), type="l", col=c("black", "green", "darkgreen"), lty=1, lwd=1, ylab="Weights")
legend("topleft", legend=c("Naive", "GMV", "GMV-lasso"), col=c("black", "green", "darkgreen"), lty=1, lwd=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.