pltransform: pltransform

Description Usage Arguments Value Examples

View source: R/pltransform.R

Description

OTU transformation for paired and longitudinal data. Computes average within-subject change (in presence for qualitative metrics, proportional or CLR-transformed abundance for quantitative metrics) during one unit of time for each taxon.

Usage

1
pltransform(otu.data, paired, norm = TRUE)

Arguments

otu.data

OTU data after pre-processing using data_prep() function. List with elements otu.props, otu.clr, and metadata.

paired

Logical indicating whether to use the paired version of the metric (TRUE) or the longitudinal version (FALSE). Paired analyis is only possible when there are exactly 2 unique time points/identifiers for each subject or pair.

norm

Logical indicating whether quantitative differences should be normalized by taxon abundance (default TRUE)

Value

List with the following elements. Data matrices have subject identifiers as row names and OTU identifiers as column names.

dat.binary

n x p matrix of data after binary/qualitative transformation

dat.quant.prop

n x p matrix of data after quantitative transformation applied to proportions

dat.quant.prop

n x p matrix of data after quantitative transformation applied to CLR-transformed proportions

avg.prop

n x p matrix with overall average proportion of each taxon

type

Type of transformation that was used (paired, balanced longitudinal, unbalanced longitudinal) with a warning if unbalanced longitudinal.

Examples

1
2
3
4
5
6
7
8
9
data("paired.otus")
data("paired.meta")
 # paired transformation
otudat <- data_prep(paired.otus, paired.meta, paired = TRUE) 
res1 <- pltransform(otudat, paired = TRUE, norm = TRUE) 
 # longitudinal transformation 
otudat <- data_prep(paired.otus, paired.meta, paired = FALSE)
res2 <- pltransform(otudat, paired = FALSE, norm = TRUE) 
    

aplantin/pldist documentation built on Feb. 26, 2021, 2:19 p.m.