Description Usage Arguments Value Examples
View source: R/estimation_beta.R
This function computes FLAME for the Function-on-Scalar regression problem, returning the significant parameters and the estimated coefficients in the kernel basis.
1 2 | estimation_beta(X, Y, eigenval, NoI, thres, number_non_zeros, ratio_lambda,
number_lambda, proportion_training_set, verbose = FALSE)
|
X |
matrix. |
Y |
matrix. |
eigenval |
vector. |
NoI |
scalar. integer, maximum number of iterations in the Coordinate-Descent loop. |
thres |
scalar. tolerance on the K-norm of the increment of the estimation to stop the Coordinate-Descent loop |
number_non_zeros |
scalar. integer, threshold on the number of non zeros parameters to be detected. It is the kill switch parameter presented in the Vignette. |
ratio_lambda |
scalar. ratio to compute the minimum value of lambda. The
maximum λ_{\max} is computed as the minimum value which makes all the coefficients
equal to zero. The minimum is the product |
number_lambda |
scalar. integer, length of the grid for the λ parameter. |
proportion_training_set |
scalar. value in (0,1), the proportion for the training set for the Cross Validation. |
verbose |
bool. If |
list containing:
beta
matrix. J
\times I
matrix of the final estimated
coefficients in the kernel basis.
beta_no_adaptive
matrix J
\times I
matrix of
the coefficients estimated at the end of the non-adaptive step.
predictors
vector of the indices of the non-zero estimated predictors.
predictors_no_adaptive
vector of the indices of the non-zeros
predictor estimated after the non-adaptive step.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Not run:
data(simulation)
data(SobolevKernel)
I0 <- dim(B_true)[2]
time <- proc.time()
FLAME_estimation <- estimation_beta(X = X,
Y = Y_matrix,
eigenval = eigenval,
NoI = 10,
thres = 0.1,
number_non_zeros = I0*2,
ratio_lambda = 0.01,
number_lambda = 100,
proportion_training_set = 0.75,
verbose = FALSE)
duration <- proc.time()-time
duration
names(FLAME_estimation)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.