Provides several functions and datasets for area level of Small Area Estimation under Spatial SAR Model using Hierarchical Bayesian (HB) Method. For the reference, see Rao and Molina (2015) .
Arina Mana Sikana, Azka Ubaidillah
Arina Mana Sikana 221810195@stis.ac.id
spatial.normal()
This function gives small area estimator under
Spatial SAR Model and is implemented to variable of interest (y)
that assumed to be a Normal Distribution. The range of data is (-∞
\< y \< ∞)You can install the development version of saeHB.spatial
from
GitHub with:
# install.packages("devtools")
devtools::install_github("arinams/saeHB.spatial")
This is a basic example of using spatial.normal()
function to make an
estimate based on synthetic data in this package
library(saeHB.spatial)
## For data without any non-sampled area
data(sp.norm) # Load dataset
data(prox.mat) # Load proximity Matrix
## For data with non-sampled area use sp.normNs
## Fitting model
result <- spatial.normal(y ~ x1 + x2, "vardir", prox.mat, data = sp.norm)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 64
#> Unobserved stochastic nodes: 6
#> Total graph size: 8989
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 64
#> Unobserved stochastic nodes: 6
#> Total graph size: 8989
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 64
#> Unobserved stochastic nodes: 6
#> Total graph size: 8989
#>
#> Initializing model
Small Area mean Estimates
result$Est
Estimated model coefficient
result$coefficient
Estimated random effect variances
result$refVar
#> [1] 3.446660 3.277981 2.942481 2.829723 2.829723 2.942481 3.277981 3.446660
#> [9] 3.277981 3.004318 2.717549 2.623733 2.623733 2.717549 3.004318 3.277981
#> [17] 2.942481 2.717549 2.482897 2.408138 2.408138 2.482897 2.717549 2.942481
#> [25] 2.829723 2.623733 2.408138 2.341689 2.341689 2.408138 2.623733 2.829723
#> [33] 2.829723 2.623733 2.408138 2.341689 2.341689 2.408138 2.623733 2.829723
#> [41] 2.942481 2.717549 2.482897 2.408138 2.408138 2.482897 2.717549 2.942481
#> [49] 3.277981 3.004318 2.717549 2.623733 2.623733 2.717549 3.004318 3.277981
#> [57] 3.446660 3.277981 2.942481 2.829723 2.829723 2.942481 3.277981 3.446660
Rao, J.N.K & Molina. (2015). Small Area Estimation 2nd Edition. New York: John Wiley and Sons, Inc. .
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.