#' Perform random search using a paramset.
#' @param resamples A data.frame with columns `splits` and `id`, created using the `rsample` package.
#' @param recipe The recipe to use. See package `recipes`.
#' @param param_set Param set created by calling ParamHelpers::makeParamset.
#' @param n Number of parameter combinations to generate.
#' @param scoring_func Your custom train/predict/score function.
#' Must take as parameters:
#' \itemize{
#' \item a training dataframe
#' \item the name of the target variable in the training dataframe
#' \item a list of parameters (these are the hyperparameters we are tuning)
#' \item an evaluation dataframe
#' \item dots. These are additional non-tunable parameters that could be passed to the function.
#' }
#' @param ... Optional params passed to train_predict_func.
#' @details `scoring_func` can return a single score as a numeric vector,
#' or multiple scores in a data.frame.
#' @return A tidy data.frame, with one column per parameter, columns to identify the
#' paramset and the fold, a column giving the row indices of the evaluation dataset,
#' and columns for the performance scores (these are taken from the scoring function if
#' it returned a data.frame, otherwise it will just be a _score_ column).
#' @export
#' @importFrom ParamHelpers generateRandomDesign dfRowsToList
random_search <-
function(resamples,
recipe,
param_set,
n,
scoring_func,
...,
verbosity = TRUE){
param_grid_df <- generateRandomDesign(n, param_set, trafo = TRUE)
grid_search(
resamples = resamples,
recipe = recipe,
param_grid = param_grid_df,
scoring_func = scoring_func,
...,
verbosity = verbosity
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.