plotFeatures | R Documentation |
Returns a ggplot object with variables importance (across all categorical levels for factor variables) and variable per-level influence. It uses the ggpubr package to combine plots.
plotFeatures(
decision_ensemble,
levels_order = NULL,
colour_low = "#E69F00",
colour_mid = "grey87",
colour_high = "#0072B2",
return_all = FALSE
)
decision_ensemble |
stable decision ensemble (see stabilitySelection). |
levels_order |
optional, order for variables levels on the influence plot |
colour_low |
colour for the negative feature influence values (default: yellowish) |
colour_mid |
colour for the null feature influence values (default: light grey) |
colour_high |
colour for the positive feature influence values (default: blue) |
return_all |
TRUE, returns the table of feature importance and influences and each plot separated (default = FALSE). |
2 ggplots arranged in a row with ggpubr; if return_all = TRUE, returns plots separately in a list , as well as the tables used to create plots.
library(randomForest)
library(caret)
# import data and fit model
data(iris)
mod <- randomForest(Species ~ ., data = iris)
# Fit a decision ensemble to predict the species setosa (vs versicolor and
# virginica): no regularization (no decision pruning, discretization,
# bootstrapping, or decision filtering)
endo_setosa <- model2DE(model = mod, model_type = "rf", data = iris[, -5]
, target = iris$Species, classPos = "setosa"
, filter = FALSE, discretize = FALSE, prune = FALSE)
# Only decision pruning (default = TRUE) and discretization (default in 2
# categories, we want 3 categories so we change K); no bootstrapping or
# decision filtering.
endo_setosa <- model2DE(model = mod, model_type = "rf", data = iris[, -5]
, target = iris$Species, classPos = "setosa"
, filter = FALSE, discretize = TRUE, K = 3)
# idem but run it in parallel on 2 threads
endo_setosa <- model2DE(model = mod, model_type = "rf", data = iris[, -5]
, target = iris$Species, classPos = "setosa"
, filter = FALSE, discretize = TRUE, K = 3
, in_parallel = TRUE, n_cores = 2)
# Plot the decision ensemble:
# Plants from the setosa species have small petal and narrow long sepals.
plotFeatures(endo_setosa, levels_order = c("Low", "Medium", "High"))
plotNetwork(endo_setosa, hide_isolated_nodes = FALSE, layout = "fr")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.