Calculates sensitivity and specificity of estimating K precision matrices using LASICH. Returns precision matrix estimates, Frobenius norm errors, and operating characteristics.
| 1 2 | 
| Sigmas | (p * p * K) arrays sample covariance matrices from each group | 
| Sigma0 | Number of case subjects | 
| Omega0 | (p * p * K) arrays true precision matrices | 
| ns | vector of sample sizes for each group | 
| L | graph Laplacian | 
| lambda1 | value of first tuning parameter (lambda_1) | 
| lambda2 | value of second tuning parameter (lambda_2) | 
| tol | tolerance level for determining convergence of LASICH | 
| rho | tuning parameter for ADMM algorithm | 
| truegraph | a list containing true graphs (to return performance evaluation metrics) | 
| initest | initial estimator for warm start | 
| LD | a diagonal matrix added to L to improve computational efficiency | 
| wt | weight for likelihood; NULL = nk/n, 1 = (1,...,1)??? | 
| thr | whether to threshold the sample cov matrix to find connected components of the graph | 
| Sigma0 | (p * p * K) arrays true covariance matrices | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.