impute_analysis: Impute Analysis

Description Usage Arguments Value Examples

View source: R/sccwrpwbe_functions.R

Description

Function takes in a complete time series (ts_comp), a rate of missing data (rate), and an integer (seeds) of the number of trials to run an imputation algorithm which will compare 6 methods of imputing missing time series data. Both MAPE and RMSE will be returned. This function is used in ggimpute_eval and ggimpute

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
impute_analysis(
  ts_comp,
  rate,
  seeds,
  option_locf = "locf",
  option_interpol = "linear",
  model = "StructTS",
  k = 2,
  option_mean = "mean"
)

Arguments

ts_comp

Complete Time Series to run algorithm

rate

Rate of missing data to simulate

seeds

Numnber of iterations to run

option_locf

Optional parameters for na_locf

option_interpol

Optional parameters for na_interpol

model

model

k

K

option_mean

Optional Parameter for na_mean

Value

tibble

Examples

1
Hyperion %>% date_range(start='2020-04-20' , end = '2020-07-01') %>% covid_lag() %>% pull(Cases_Offset)%>%  impute_analysis(rate = 0.6,seeds = 30)

atki2828/sccwrpwbe documentation built on Dec. 19, 2021, 5:41 a.m.