knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The R package didgformula
implements inverse-probability weighted, iterated conditional g-computation, and doubly robust targeted maximum likelihood estimators for sustained intervention effects under parallel trends assumptions.
Only the development version is available so far. You can install it from GitHub with:
# install.packages("devtools") devtools::install_github("audreyrenson/didgformula")
Here is a basic example using simulated data:
library(didgformula) set.seed(10) time_periods = 5 N_obs = 1e4 parameters = generate_parameters(Tt=time_periods) df = generate_data(N=N_obs, Tt=time_periods, Beta=parameters, ylink = 'rnorm_identity') head(df)
We can calculate the true parameters by generating a large number of potential outcomes under the same data-generating mechanism:
df_po = generate_data(N=N_obs*10, Tt=time_periods, Beta=parameters, ylink='rnorm_identity', potential_outcomes = TRUE) truth = colMeans(calc_ydiffs(df_po, Tt=time_periods)) #calc_ydiffs simply takes Y_t-Y_{t-1} for t=1,...,T truth
We can estimate this using IPTW:
estimates_iptw = iptw_pipeline(data = df, den_formula = '~W{t}', Tt=time_periods) estimates_iptw
ICE:
estimates_ice = ice_pipeline(data = df, inside_formula_t = '~W{t}', inside_formula_tmin1='~W{t-1}', outside_formula = '~W{k}', Tt=time_periods) estimates_ice
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.