knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(incidenceflow)
library(tidyverse) library(readxl) library(lubridate) library(aweek) library(janitor) # library(avallecam) library(compareGroups) library(incidence) library(patchwork) # library(avallecam) library(EpiEstim) library(colorspace) theme_set(theme_bw())
# example outbreak -------------------------------------------------------- library(outbreaks) #sample data library(incidence) #core functions # library(avallecam) #improvements outbreak_data <- ebola_sim$linelist$date_of_onset
# packages ---------------------------------------------------------------- if(!require("devtools")) install.packages("devtools") # if(!require("avallecam")) devtools::install_github("avallecam/avallecam") #improvements library(tidyverse) #magrittr and purrr packages library(lubridate) #ymd library(outbreaks) #sample data library(incidence) #core functions # example outbreak -------------------------------------------------------- dat <- ebola_sim$linelist$date_of_onset i.7 <- incidence(dat, interval=7) # plot(i.7) f1 <- fit(i.7[1:20]) f2 <- fit_optim_split(i.7) # broom like functions ---------------------------------------------------- # tidy f1 %>% tidy_incidence() f2 %>% pluck("fit") %>% tidy_incidence() # glance f1 %>% glance_incidence() f2 %>% pluck("fit") %>% glance_incidence() # using purrr ------------------------------------------------------------- # using purrr::map family function allows easy stratification # for gender and could be extrapolated to administrative levels # in country level analysis incidence_purrr <- ebola_sim$linelist %>% as_tibble() %>% #filter observations explicitly before incidence() filter(date_of_onset<lubridate::ymd(20141007)) %>% #stratify by any group of covariates group_by(gender) %>% nest() %>% mutate(incidence_strata=map(.x = data, .f = ~incidence(.x %>% pull(date_of_onset), interval=7))) %>% mutate(strata_fit=map(.x = incidence_strata, .f = fit)) %>% mutate(strata_fit_tidy=map(.x = strata_fit, .f = tidy_incidence)) %>% mutate(strata_fit_glance=map(.x = strata_fit, .f = glance_incidence)) # keep only the tibbles incidence_purrr_tibble <- incidence_purrr %>% select(-data,-incidence_strata,-strata_fit) # tidy_incidence output incidence_purrr_tibble %>% unnest(cols = c(strata_fit_tidy)) # glance_incidence output incidence_purrr_tibble %>% unnest(cols = c(strata_fit_glance))
linelist_raw <- ebola_sim$linelist %>% as_tibble() %>% #filter observations explicitly before incidence() # filter(date_of_onset<lubridate::ymd(20141007)) %>% mutate(all="all") dictionary <- linelist_raw %>% count(all,gender) %>% rownames_to_column(var = "code") linelist_raw %>% group_by(gender) %>% skimr::skim()
time_delay_set = 7 #### execute ------------------------------- nest_dynamics <- create_nest_dynamics(linelist = linelist_raw, dictionary = dictionary, strata_major = all, strata_minor = gender, strata_minor_code = code, # unico para diccionario date_incidence_case = date_of_onset, date_of_analysis_today=FALSE, issue_number_set = 0)
nest_dynamics %>% glimpse() #### nested figures ------------------------------- # nest_summary <- create_nest_summary_map(nest_dynamics = nest_dynamics, # geometry = ubigeo_geometria_per2, # strata_major=nm_pais, # strata_minor=nm_depa) nest_summary <- create_nest_summary(nest_dynamics = nest_dynamics, time_limit_fig02 = Inf) nest_summary %>% glimpse()
region_name <- "all" nest_summary %>% filter(strata_major==region_name) %>% pull(fig01) %>% pluck(1) nest_summary %>% filter(strata_major==region_name) %>% pull(fig02) %>% pluck(1) nest_summary %>% filter(strata_major==region_name) %>% pull(fig03) %>% pluck(1) # nest_summary %>% # filter(strata_major==region_name) %>% # pull(fig04) %>% pluck(1) nest_summary %>% filter(strata_major==region_name) %>% pull(tab01) %>% pluck(1) nest_summary %>% filter(strata_major==region_name) %>% pull(tab02) %>% pluck(1) nest_summary %>% filter(strata_major==region_name) %>% pull(tab03) %>% pluck(1) nest_summary %>% filter(strata_major==region_name) %>% pull(tab04) %>% pluck(1)
nest_dynamics %>% slice(1) %>% pull(incidence_fit_figure) %>% pluck(1) nest_dynamics %>% slice(1) %>% pull(rt_figure) %>% pluck(1) nest_dynamics %>% slice(2) %>% pull(rt_figure) %>% pluck(1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.