ommit.start(my.corona, 'confirmed', params$confirmed.start, filter.states = countries)
ommit.start(my.corona, 'death', params$confirmed.start, filter.states = countries)
ommit.start(my.corona, 'confirmed', params$confirmed.start, filter.states = countries, log2.flag = TRUE)
ommit.start(my.corona, 'death', params$confirmed.start, filter.states = countries, log2.flag = TRUE)
ommit.data(my.corona, 'confirmed') %>% datatable(rownames = FALSE)
ommit.data(my.corona, 'confirmed') %>% datatable(rownames = FALSE)
r params$confirmed.start
cases or r params$death.start
deaths {.tabset .tabset-fade .tabset-pills}The visualizations presented below have been time-shifted to the day when each r region(1, TRUE)
exceeded r params$confirmed.start
cases or r params$death.start
deaths (depending on the visualization).
It is an arbitrary number, but allows to have a more accurate view of the progression as the first cases are quite sporadic and make the plots more complex.
Important note: All plots are in the logarithm scale (base 2) as it allows to better visualize when cases duplicate.
It is used because covid-19 cases grow very fast, and this way it becomes easier to read over time the number of cases. Always look at the y axis.
If you do not understand logarythm scale, I recommend this video.
ommit.start(after.100.dat$all, 'confirmed', params$confirmed.start, filter.states = countries)
ommit.start(after.100.dat$all, 'death', params$death.start, filter.states = countries)
ommit.start(after.100.dat$all, 'confirmed', params$confirmer.start, filter.states = countries, log2.flag = TRUE)
ommit.start(after.100.dat$all, 'death', params$death.start, filter.states = countries, log2.flag = TRUE)
after.100.dat$confirmed %>% datatable(rownames = FALSE)
after.100.dat$death %>% datatable(rownames = FALSE)
r params$confirmed.start
cases or r params$death.start
deaths (per 100k population) {.tabset .tabset-fade .tabset-pills}Showing population for plotted r region(2, TRUE)
This becomes relevant for the next plots.
ommit.start(after.100.dat$all, 'confirmed', params$confirmed.start, filter.states = countries, log2.flag = FALSE, per.100k.flag = TRUE)
ommit.start(after.100.dat$all, 'death', params$confirmer.start, filter.states = countries, log2.flag = FALSE, per.100k.flag = TRUE)
ommit.start(after.100.dat$all, 'confirmed', params$confirmer.start, filter.states = countries, log2.flag = TRUE, per.100k.flag = TRUE)
ommit.start(after.100.dat$all, 'death', params$confirmer.start, filter.states = countries, log2.flag = TRUE, per.100k.flag = TRUE)
after.100.dat$confirmed %>% datatable(rownames = FALSE)
after.100.dat$death %>% datatable(rownames = FALSE)
r params$last.days
daysr params$last.days
days {.tabset .tabset-fade .tabset-pills}Instead of showing the evolution of the cases/deaths since a r region(1, TRUE)
exceeded r params$confirmed.start
/r params$death.start
cases, it insteads shows the last 12 days.
The first data point is the number of new cases that day.
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = FALSE, per.100k.flag = FALSE, new.flag = TRUE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = FALSE, per.100k.flag = FALSE, new.flag = TRUE)
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = TRUE, per.100k.flag = FALSE, new.flag = TRUE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = TRUE, per.100k.flag = FALSE, new.flag = TRUE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'confirmed') %>% datatable(rownames = FALSE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'death') %>% datatable(rownames = FALSE)
r params$last.days
days (per 100k population) {.tabset .tabset-fade .tabset-pills}Instead of showing the evolution of the cases/deaths since a r region(1, TRUE)
exceeded r params$confirmed.start
/r params$death.start
cases, it insteads shows the last 12 days.
The first data point is the number of new cases that day.
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = FALSE, per.100k.flag = TRUE, new.flag = TRUE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = FALSE, per.100k.flag = TRUE, new.flag = TRUE)
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = TRUE, per.100k.flag = TRUE, new.flag = TRUE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = TRUE, per.100k.flag = TRUE, new.flag = TRUE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'confirmed') %>% datatable(rownames = FALSE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'death') %>% datatable(rownames = FALSE)
r params$last.days
days {.tabset .tabset-fade .tabset-pills}Instead of showing the evolution of the cases/deaths since a r region(1, TRUE)
exceeded r params$confirmed.start
/r params$death.start
cases, it insteads shows the last 12 days.
The first data point is the number of new cases that day.
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = FALSE, per.100k.flag = FALSE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = FALSE, per.100k.flag = FALSE)
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = TRUE, per.100k.flag = FALSE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = TRUE, per.100k.flag = FALSE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'confirmed', countries) %>% datatable(rownames = FALSE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'death', countries) %>% datatable(rownames = FALSE)
r params$last.days
days (per 100k population) {.tabset .tabset-fade .tabset-pills}Instead of showing the evolution of the cases/deaths since a r region(1, TRUE)
exceeded r params$confirmed.start
/r params$death.start
cases, it insteads shows the last 12 days.
The first data point is the number of new cases that day.
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = FALSE, per.100k.flag = TRUE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = FALSE, per.100k.flag = TRUE)
last.days(last.days.dat, 'confirmed', params$last.days, countries, log2.flag = TRUE, per.100k.flag = TRUE)
last.days(last.days.dat, 'death', params$last.days, countries, log2.flag = TRUE, per.100k.flag = TRUE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'confirmed') %>% datatable(rownames = FALSE)
warning: sub-total is only for last 12 days
last.days.data(last.days.dat, 'death') %>% datatable(rownames = FALSE)
Warning: This visualization is not very intuitive, use it to see the trend over the last days.
last.week.cumulative(last.week.dat, 'confirmed', 4, countries, log2.flag = FALSE, per.100k.flag = FALSE)
last.week.cumulative(last.week.dat, 'death', 4, countries, log2.flag = FALSE, per.100k.flag = FALSE)
last.week.cumulative(last.week.dat, 'confirmed', 4, countries, log2.flag = FALSE, per.100k.flag = TRUE)
last.week.cumulative(last.week.dat, 'death', 4, countries, log2.flag = FALSE, per.100k.flag = TRUE)
cumulative.last.days.data(last.week.dat, 'confirmed', countries, 4) %>% datatable(rownames = FALSE)
cumulative.last.days.data(last.week.dat, 'death', countries, 4) %>% datatable(rownames = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.