library(OSMtidy)

knitr::opts_chunk$set(echo = TRUE, out.height = "75%", out.width = "75%")
data("dlWrangle")
dataSummary(dlWrangle)

Use uniqueDescriptors() to get an overview of the types of descriptors associated with each feature.

uniqueDescriptors <- function(dataWrangle, elements = NULL) {

  if(is.null(elements)) { elements <- 1:length(dataWrangle$dataWrangled) }  

  subset <- dataWrangle$dataWrangled[elements]

  names <- sapply(subset, function(x) { x$feature[[1]] })

lapply(subset, function(x) { 
  x %>%
  as_tibble %>% 
  select(-contains("osm_id"), -contains("geometry"), -contains("feature")) %>% 
  OSMtidy:::.rmCols() %>% 
  as.matrix %>% 
  as.vector %>% 
  unique
}) %>%

  setNames(names)

}


uniqueDescriptors(dlWrangle, c(1,2,4,5))

Create an initial set of filters using the filters template. Use system.file("extdata", "", package = "OSMtidy") to locate the template directory.

data("myFilters1")
myFilters1
dlFilter1 <- dataFilter(dlWrangle, myFilters1)
getwd()
dataExport(dlFilter1, "vignette3Filter1")

Check spreadsheet output... Update filters to be more specific...

data("myFilters2")
dlFilter2 <- dataFilter(dlWrangle, myFilters2)
getwd()
dataExport(dlFilter2, "vignette3Filter2")
data("myFilters3")
dlFilter3 <- dataFilter(dlWrangle, myFilters3)
getwd()
myFilters3
dataExport(dlFilter3, "vignette3Filter3")


avisserquinn/OSMtidy documentation built on June 3, 2023, 7:30 a.m.