R_estep | R Documentation |
Computes conditional covariance of OD flows for E-step of EM algorithm from Cao et al. (2000) for their locally IID model.
R_estep(lambda, phi, A, c, epsilon)
lambda |
numeric vector (length k) of mean OD flows from last M-step |
phi |
numeric scalar scale for covariance matrix of xt |
A |
routing matrix (m x k) for network being analyzed |
c |
power parameter in model of Cao et al. (2000) |
epsilon |
numeric nugget to add to diagonal of covariance for numerical stability |
conditional covariance matrix (k x k) of OD flows given parameters
J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.
Other CaoEtAl:
Q_iid()
,
Q_smoothed()
,
grad_iid()
,
grad_smoothed()
,
locally_iid_EM()
,
m_estep()
,
phi_init()
,
smoothed_EM()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.